

IMPOSSIBLE AND IMPROBABLE DIFFERENTIAL CRYPTANALYSIS OF

SPOOK ALGORITHM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

 MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONUR BOLEL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

CYBER SECURITY

JUNE 2021

Approval of the thesis:

IMPOSSIBLE AND IMPROBABLE DIFFERENTIAL CRYPTANALYSIS OF

SPOOK ALGORITHM

submitted by Onur BOLEL in partial fulfillment of the requirements for the degree of

Master of Science in Cyber Security Department, Middle East Technical University

by,

Prof. Dr. Deniz ZEYREK BOZŞAHİN

Dean, Graduate School of Informatics

Assist. Prof. Dr. Cihangir TEZCAN

Head of Department, Cyber Security

Assist. Prof. Dr. Cihangir TEZCAN

Supervisor, Cyber Security Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Cengiz ACARTÜRK

Cognitive Science Dept., METU

Assist. Prof. Dr. Cihangir TEZCAN

Cyber Security Dept., METU

Prof. Dr. Ali Aydın SELÇUK

Computer Engineering Dept., TOBB ETÜ

Date: 14.06.2021

iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last Name: Onur BOLEL

Signature :

iv

v

ABSTRACT

IMPOSSIBLE AND IMPROBABLE DIFFERENTIAL CRYPTANALYSIS OF

SPOOK ALGORITHM

BOLEL, Onur

MSc., Department of Cyber Security

Supervisor: Assist. Prof. Dr. Cihangir TEZCAN

June 2021, 78 pages

In recent years, the number of IoT devices increased considerably and the security of

IoT devices became an important issue. Furthermore, most IoT devices have constrained

resources in terms of memory, area and power. Therefore, cryptographic algorithms that

provide their security should be suitable for the implementation on the constrained

devices.

In 2013, NIST initiated a lightweight cryptography project to define the standards of

lightweight cryptography. In 2018, the lightweight cryptography project turned into a

competition-like process to choose the most convenient algorithms for constrained

devices as a NIST standard. 57 algorithms were applied to the project. NIST published

all algorithms for public evaluation and encouraged third-party analyses to reveal the

weaknesses of algorithms. 32 algorithms were chosen as round 2 candidates.

In this thesis, we have investigated the Spook algorithm, which is one of the round 2

candidates of the NIST’s lightweight cryptography competition. Spook is an AEAD

algorithm that uses duplex sponge construction and tweakable block cipher. Besides,

Spook has an internal permutation which is Shadow-512. We have worked on Shadow-

512 permutation to find a distinguisher. Shadow-512 permutation was designed as 6-

Step. The outputs of Shadow-512 permutation should seem random after the 6-Step

operation. However, we have found two different 6-Step impossible differential

distinguishers that cover full Shadow-512. Besides, we have found 7-Step impossible

vi

distinguisher and 8-Step improbable distinguisher by adding one or more additional

steps to Shadow-512. The 8-Step improbable differential covers the largest number of

steps of Shadow-512 compared to previously found distinguishers in other published

papers. To conclude, we can distinguish 6-, 7-, 8-Step of Shadow-512 from a random

permutation by using our distinguishers.

Keywords: Lightweight Cryptography, differential cryptanalysis, impossible differential,

improbable differential, Shadow-512

vii

ÖZ

SPOOK ALGORİTMASININ İMKANSIZ VE OLASI OLMAYAN

DİFERANSİYEL KRİPTANALİZİ

BOLEL, Onur

Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Dr. Öğretim Üyesi Cihangir TEZCAN

Haziran 2021, 78 sayfa

Son yıllarda, IoT cihazlarının sayısı oldukça arttı ve IoT cihazlarının güvenliği önemli

bir konu haline geldi. Ayrıca, çoğu IoT cihazı, bellek, alan ve güç açısından kısıtlı

kaynaklara sahiptir. Bu yüzden, güvenliklerini sağlayan kriptografik algoritmalar kısıtlı

cihazlarda uygulanmaya elverişli olmalıdır.

2013 yılında NIST, hafif kriptografi standartlarını tanımlamak için bir hafif kriptografi

projesi başlattı. 2018 yılında, hafif kriptografi projesi, kısıtlı cihazlar için en uygun

algoritmaları NIST standardı olarak seçmek için yarışma benzeri bir sürece dönüştü.

Projeye 57 algoritma başvurdu. NIST tüm algoritmaları herkesin değerlendirmesi için

yayınladı ve algoritmaların zayıflıklarının ortaya çıkması için üçüncü taraf analizlerin i

teşvik etti. 32 algoritma 2. tur adayları olarak seçildi.

Bu tezde, NIST’in hafif kriptografi yarışmasının 2. tur adaylarından biri olan Spook

algoritmasını inceledik. Spook, dubleks sünger yapısı ve ayarlanabilir blok şifre

kullanan bir kimlik doğrulamalı şifreleme algoritmasıdır. Ayrıca, Spook’un Shadow-

512 olan dahili bir permütasyonu vardır. Bir ayırt edici bulmak için Shadow-512

permütasyonu üzerinde çalıştık. Shadow-512 permütasyonu 6-Basamak olarak

tasarlanmıştır. Shadow-512 permütasyonunun çıktıları 6-Basamak işlemden sonra

rastgele olarak görünmelidir. Yine de, tam Shadow-512’yi kapsayan iki farklı 6-

Basamak imkansız diferansiyel ayırt edici bulduk. Ayrıca, Shadow-512’ye bir ya da iki

basamak ekleyerek 7-Basamak imkansız ayırt edici ve 8-Basamak olası olmayan ayırt

edici bulduk. 8-Basamak olası olmayan diferansiyel ayırt edici, diğer yayınlanmış

viii

makalelerdeki daha önceden bulunmuş ayırt edicilerle karşılaştırıldığında Shadow-

512’nin en fazla basamağını kapsar. Sonuç olarak, ayırt edicilerimizi kullanarak 6-,7-,8-

Basamak Shadow-512’yi rastgele permütasyondan ayırt edebiliriz.

Anahtar Sözcükler: Hafif Kriptografi, diferansiyel kriptanaliz, imkansız diferansiyel,

olası olmayan diferansiyel, Shadow-512

ix

DEDICATION

To My Family

x

xi

ACKNOWLEDGMENTS

First of all, I would like to express my sincere appreciation to my thesis supervisor

Assist. Prof. Dr. Cihangir TEZCAN for boundless help, guidance, patience, suggestions,

and feedback throughout this project.

I would like to thank Assoc. Prof. Dr. Cengiz ACARTÜRK and Prof. Dr. Ali Aydın

SELÇUK for participating and contributing the thesis defense jury.

I am indebted to my family for always trusting and supporting me.

I would like to thank ASELSAN Inc. for supporting roles.

Last but not least, I also would like to thank my friend Onur ŞANAL for their extreme

support and understanding.

xii

xiii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vii

DEDICATION.. ix

ACKNOWLEDGMENTS ... xi

TABLE OF CONTENTS .. xiii

LIST OF TABLES ... xv

LIST OF FIGURES ... xvii

LIST OF ABBREVIATIONS ... xviii

1. INTRODUCTION ... 1

1.1. Block Ciphers .. 2

1.2. Cryptanalysis of Block Cipher ... 4

1.3. Differential Cryptanalysis .. 5

1.4. Truncated Differential Cryptanalysis.. 6

1.5. Impossible Differential Cryptanalysis .. 7

1.6. Improbable Differential Cryptanalysis ... 8

1.7. Lightweight Cryptography Competition ... 9

1.8. Our Contribution and the Structure of the Thesis ... 11

2. OVERVIEW OF SPOOK ... 13

2.1. S1P mode of operation ... 13

2.2. Clyde-128, Tweakable LS-Design.. 15

2.3. Shadow-512 ... 16

2.4. Components of Clyde-128 and Shadow-512 .. 18

2.4.1. S-Box Layer .. 18

2.4.2. L-Box Layer .. 19

2.4.3. Round Constant Addition ... 19

2.4.4. D-Box Layer .. 20

xiv

2.5. Security Claims of Spook .. 21

3. CRYPTANALYSIS RESULT ON SPOOK BRINGING FULL-ROUND

SHADOW-512 TO THE LIGHT ... 23

3.1. Preliminaries of Distinguishers .. 24

3.1.1. Super S-Box .. 24

3.1.2. 3-Identical State .. 24

3.2. 5-Step Truncated Differential Distinguisher of Shadow-512 26

3.3. 6- Step and 7-Step Truncated Differential Distinguisher of Shadow-512........ 30

3.4. Summary of Truncated Differential Distinguishers .. 33

4. IMPOSSIBLE AND IMPROBABLE DIFFERENTIAL DISTINGUISHERS OF

SHADOW-512 .. 35

4.1. DDT of S-Box and inverse S-Box. ... 36

4.2. Undisturbed Bits of S-Box and inverse S-Box ... 37

4.3. 6-Step Impossible Differential Distinguisher of Shadow-512 38

4.3.1. Adding One More Step in the Forward Direction ... 39

4.3.2. Adding One More Step in the Backward Direction .. 49

4.4. 7- Step Impossible Differential Distinguisher of Shadow-512 60

4.5. 8-Step Improbable Differential Distinguisher of Shadow-512 64

5. CONCLUSION ... 69

REFERENCES .. 71

xv

LIST OF TABLES

Table 1.1: Round 2 Candidates of NIST’s Lightweight Cryptography Competition 11
Table 2.1: S-Box and inverse S-Box of Spook in table representation 18

Table 2.2: L-Box and inverse L-Box of Shadow-512 ... 19
Table 2.3: Round constants of Shadow-512 .. 20

Table 3.1: Notation of Chapter 3 .. 24
Table 3.2: The probability of 3-Identical output when inputs are 3-Identical 26

Table 4.1: Notation of Chapter 4 .. 35
Table 4.2: DDT of S-Box of Shadow-512 .. 36

Table 4.3: DDT of inverse S-Box of Shadow-512 .. 37
Table 4.4: Undisturbed Bits of S-Box and inverse S-Box ... 38

Table 4.5: 1-Step in the forward direction to obtain 6-Step impossible differential

distinguisher ... 41

Table 4.6: The bits that are different for Bundle-0 and Bundle-1 43
Table 4.7: The difference of Bundle-2 that should not be obtained after the second

S-Box layer ... 46
Table 4.8: Possible input differences of L-Box that makes the output difference zero ... 47

Table 4.9: 1-Step in the backward direction to obtain 6-Step impossible differential

distinguisher ... 51

Table 4.10: Initial values of bundles at the end of Step-5 .. 52
Table 4.11: Inverse D-Box and Inverse S-Box of Step-5 .. 53

Table 4.12: Round constant addition for Bundle-0 ... 54
Table 4.13: The impact of round constant addition after inverse L-Box operation for

Bundle-0 ... 54
Table 4.14: Round constant addition for Bundle-1 ... 55
Table 4.15: The impact of round constant addition after inverse L-Box operation for

Bundle-1 ... 55
Table 4.16: Round constant addition for Bundle-2 ... 55

Table 4.17: The impact of round constant addition after inverse L-Box operation for

Bundle-2 ... 56

Table 4.18: Round constant addition for Bundle-3 ... 56
Table 4.19: The impact of round constant addition after inverse L-Box operation for

Bundle-3 ... 56
Table 4.20: Round constant addition and inverse L-Box of Step-5 57

Table 4.21: Inverse S-Box of Step-5 and inverse D-Box of Step-4 58
Table 4.22: The possible input difference structures of 7-Step impossible differential

distinguisher ... 63

xvi

Table 5.1: Summary of truncated, impossible, and improbable differential distinguishers

on Shadow-512... 70

xvii

LIST OF FIGURES

Figure 1.1: Substitution Permutation Network .. 3
Figure 1.2: Feistel Network .. 3

Figure 1.3: Duplex Construction .. 4
Figure 1.4: Miss-in-the-middle technique ... 7

Figure 1.5: Expanded Improbable Differentials .. 9
Figure 2.1: S1P mode with TBC E ... 14

Figure 2.2: Illustration of Shadow-512 ... 17
Figure 2.3: State of Shadow-512 .. 17

Figure 2.4: Bit organization of a Shadow-512’s bundle .. 18
Figure 3.1: 5-Step Truncated Differential of Shadow-512 .. 27

Figure 3.2: 7-Step Truncated Differential of Shadow-512 .. 30
Figure 4.1: 6-Step Impossible Differential Distinguisher of Shadow-512 that starts from

Step-3 ... 39
Figure 4.2: 6-Step Impossible Differential Distinguisher of Shadow-512 that starts from

Step-2 ... 49
Figure 4.3: 7-Step Impossible Differential Distinguisher of Shadow-512 60

Figure 4.4: 8-Step Improbable Differential Distinguisher of Shadow-512 64

xviii

LIST OF ABBREVIATIONS

NIST National Institute of Standards and Technology

AEAD Authenticated Encryption with Associated Data

SPN Substitution Permutation Network

XOR Exclusive OR

TBC Tweakable Block Cipher

1

CHAPTER 1

INTRODUCTION

Cryptology is a science that aims to protect information against third parties when

two parties are communicating in an insecure channel. Cryptology can be divided

into two subcategories: Cryptography and Cryptanalysis. Cryptography aims to

design secure algorithms that can be used to encrypt information. On the other hand,

Cryptanalysis aims to exploit the encrypted messages to reveal the information by

using the weaknesses of the cryptographic algorithms.

To understand the whole picture, some terms are defined. The plaintext is the

messages that are wanted to be protected against unauthorized parties and plaintext is

generally denoted by . If plaintext is encrypted with a cryptographic algorithm, a

ciphertext is obtained. A ciphertext should be incomprehensible for everyone and it

must look like a random sequence of characters. Also, one of the essential

components of cryptography is -bit key. The key is used to encrypt the plaintext to

obtain ciphertext. The security of the cryptographic algorithm depends on the key,

and the key must always be secret even if cryptography algorithms are publicly

known, according to Kerckhoff’s Principle. Initialization vector and cryptographic

nonce that should be random are the other inputs of a cryptographic algorithm.

Nonce should be used only once in a communication session. In addition, -bit tag

is used for authentication of messages. In a communication, the sender encrypts the

plaintext and computes the tag by using the key and then sends them to the

receiver. The receiving end computes by using ciphertext then checks . If

the tags match, it means messages are not altered by third parties.

Cryptography includes several subjects such as Symmetric Cryptography,

Asymmetric Cryptography and Hash Functions. Symmetric and Asymmetric

Cryptography differ by the usage of a key of cryptographic algorithms. Asymmetric

Cryptography algorithms use two different keys, which are called private and public

keys. The plaintext is encrypted with one of the keys and the ciphertext should be

decrypted with the other key. As the name indicates, the public key is publicly

known and the private key is only obtained by the owner. Besides, asymmetric

cryptography algorithms are also used for authentication and key exchange. RSA

(Rivest et al., 1978), Diffie-Hellman (Diffie & Hellman, 1976) and Elliptic Curve

2

Cryptography (Araki et al., 1998) are the most known asymmetric cryptography

algorithms. On the other hand, in symmetric cryptography, two parties have the same

key and both encryption and decryption processes are operated with the same key.

Block ciphers and stream ciphers are two main categories of Symmetric

Cryptography.

In this chapter, firstly, block ciphers and their types will be explained. Then some

cryptanalysis techniques that are used to exploit the weaknesses of block ciphers will

be clarified. After that, the concept of lightweight cryptography and NIST’s

lightweight cryptography competition will be mentioned.

1.1. Block Ciphers

A block cipher algorithm takes -bit input and produces -bit output. To do that, the

plaintext is divided into -bit blocks, and each block is encrypted with -bit key. The

ciphertext is composed of these encrypted blocks. Block cipher algorithms have a

round function that iterates the input for times. In other words, the round function

is applied to -bit blocks for rounds and then ciphertext blocks are obtained. Also,

round keys are generated from the key to use in each round. AES (Daemen &

Rijmen, 2002), DES, PRESENT (Bogdanov et al., 2007) are the most known block

cipher algorithms.

Each block cipher algorithm has a different design and round function; however, it is

possible to group the designs into two categories which are Feistel Networks and

Substitution Permutation Networks (SPN). In addition, some algorithms use Sponge

Construction as a block cipher.

SPN consists of three main components, which are key addition, substitution and

permutation. Firstly, the plaintext block is XORed with the round key. Then,

substitution is applied. The substitution layer consists of -bit S-Boxes, which

provide confusion. After that, the permutation layer which provides diffusion is

applied. These three layers are applied for each round. After rounds, the output is

XORed with the last round key to produce the ciphertext block. AES (Daemen &

Rijmen, 2002), PRESENT (Bogdanov et al., 2007) and SERPENT (Biham,

Anderson, et al., 1998) are SPN type block ciphers. In this thesis, the Shadow-512

permutation of the Spook (Bellizia et al., 2019) algorithm was investigated. Shadow-

512 has an SPN structure. Fig. 1.1 shows the general SPN structure.

3

Figure 1.1: Substitution Permutation Network

Feistel Networks has two parts which are round function and swap operation. Firstly,

the plaintext block is divided into two pieces. One of the pieces and round key are

the input of the round function. Round function is applied to one of the pieces and

the output of the round function is XORed with the other piece. Then two pieces are

swapped with each other. HIGHT (D. Hong et al., 2006) has a Feistel Network

structure. Fig. 1.2 shows the Feistel Network.

Figure 1.2: Feistel Network

Sponge function was first introduced in (Bertoni et al., 2007) as a hash function.

Then, it was used in the design of Keccak family (Bertoni et al., 2009) that was

chosen as the algorithm of the SHA-3 hash function. After that, Duplex Sponge

construction was introduced in (Bertoni et al., 2012) as an authenticated encryption

4

mode. It can be said that the design is similar to block cipher. However, the key

schedule part does not exist. The duplex sponge construction relies on a strong

permutation. In duplex construction, the -bit state has two parts such as -bit

rate and -bit capacity. Firstly, -bit state initializes to zero. The initialization

part may be different for different algorithms. Then input block is padded to -

bit. After that, is XORed with -bit of state. The permutation is applied to the

state. The first -bit of the state gives output. Fig. 1.3 shows the duplex sponge

construction.

Figure 1.3: Duplex Construction

In this thesis, we investigated the Spook (Bellizia et al., 2019) algorithm and it has

duplex sponge construction. In addition, the permutation corresponds to Shadow-

512 permutation. A detailed explanation about the Spook algorithm will be given in

Chapter 2.

1.2. Cryptanalysis of Block Cipher

According to Kerckhoff’s Principle, the key must always be kept secret in a

cryptosystem even if cryptography algorithms can be known publicly. Therefore,

most of the time, an attacker tries to find the correct key that is used in the encryption

algorithm. There are several generic attacks that are performed to obtain key

material. Exhaustive search is one of the most known attack types in cryptanalysis.

An attacker captures a plaintext-ciphertext pair and tries to encrypt plaintext with all

possible keys until correct ciphertext is observed. Similarly, if only a ciphertext is

captured, the ciphertext can be decrypted with all possible keys until meaningful

plaintext is observed. If the key has -bit, there are 2
k

possible keys. Therefore, the

required time in the worst-case scenario is directly proportional to the key length.

After all, the exhaustive search may not be practical if the key length is large.

All plaintext blocks and corresponding ciphertext blocks for a key can be captured

and stored in a large memory. If a ciphertext wanted to be decrypted, the

corresponding plaintext is obtained by searching in the memory. These types of

attacks are called table attacks. For a block cipher, both plaintext and ciphertext

blocks are -bit blocks. There are 2
b
 possible plaintext-ciphertext pairs. If is large,

it is hard to find the memory space to store all data.

5

There is another technique that aims to use less memory and time. Hellman

introduced Time Memory Trade-off Attack (Hellman, 1980) and it aims to reduce the

required time by using pre-computed data. In this attack, only a small part of the data

is pre-computed and stored in the memory. Therefore, when an attacker performs an

exhaustive search to a ciphertext, an attacker needs less than 2
k
 operations to obtain

the plaintext that exists in the table.

The logic behind cryptanalysis is finding the correct key or revealing the secret

information from encrypted data. As mentioned above, an exhaustive search can take

more time than an attacker has. Also, a table attack can need a huge amount of

memory. If an attack that reveals the correct key of a cipher needs less time than

exhaustive search and less memory than a table attack, it can be said that the cipher is

broken.

The attack types can be categorized according to the data that is used. Ciphertext-

only or known-ciphertext attacks mean that an attacker has only some ciphertexts to

find the correct key or corresponding plaintext. Exhaustive search is an example of

ciphertext-only attacks. In known-plaintext attacks, an attacker has both plaintext and

ciphertext pairs. Table attack is an example of known-plaintext attack. In chosen-

plaintext attacks, an attacker chooses some plaintexts to be encrypted, then captures

the ciphertexts and makes some calculations on them to find the key. Adaptive

chosen-plaintext attacks look like chosen-plaintext attacks. Firstly, attackers choose

some plaintexts and obtain their corresponding ciphertexts. After performing an

analysis of ciphertexts, attackers choose new plaintexts to encrypt and they improve

their attacks by analyzing the new ciphertexts.

It is possible to compare attacks in terms of resources that are needed. The volume of

data that is needed to perform an attack is defined as data complexity. The number of

plaintexts or ciphertexts that are used in an attack gives information about data

complexity. Some attacks need more operation in software or hardware. Time

complexity describes the computational time that it takes to perform an attack. To

perform some attacks, the data should be stored in a memory. The volume of storage

gives the memory complexity of an attack.

1.3. Differential Cryptanalysis

Differential cryptanalysis was first introduced in (Biham & Shamir, 1991) in the

1980s. It is a statistical chosen-plaintext attack that analyzes the relation between

input and output differences. It aims to find a pattern which input differences lead to

which output differences by using the same key. The difference is obtained by

XORing two messages. Let and be two inputs of an algorithm and and be

two outputs after rounds, respectively. denotes the input difference

and denotes the output difference. has bits and the probability of

having output difference is for a random permutation. If an input

difference leads output difference after rounds with the probability , it is

considered as differential characteristic of an algorithm for rounds. Also, this

statistical property is called a distinguisher which can be used to distinguish the

rounds of a cipher from a random permutation. The output of an algorithm should be

6

random and cannot be predicted by an adversary. A distinguisher helps the adversary

notice whether the output is random or the algorithm’s output itself.

Differential distinguisher, which is mentioned above, can be used for key-guessing.

Firstly, a distinguisher is found for rounds of the algorithm by an adversary. Then,

one or more rounds of encryption are added to the top or bottom of the distinguisher.

An adversary collects or generates input pairs and their corresponding output

pairs. Then, the adversary checks input-output pairs to determine how many times

the distinguisher is obtained for candidate keys. The number of occurrences of the

distinguisher is counted for every possible key. As mentioned above, denotes the

probability of obtaining the distinguisher for a correct key and denotes the

probability of obtaining the distinguisher for a random permutation. In addition,

wrong keys can be considered behaving like a random permutation. This approach is

called Wrong-key Randomization Hypothesis. After all, an adversary has two

binomial distributions with parameters for a correct key and for a

wrong key. The expected values of two binomial distributions are

and . Then, the threshold should be specified between and to

determine whether the key is correct or wrong. The key counter should be bigger

than for a correct key and smaller than for a wrong key. However, the key

counter may be smaller than for some possible correct key. It is called non-

detection and the probability of non-detection is denoted by . Likewise, the key

counter may be bigger than for some possible wrong keys. It is called false alarm

and the probability of false alarm is denoted by . Hence, the success probability

of an attack is . Since the false alarm gives the wrong information about

whether the key is correct or wrong, it causes to make extra effort to find the correct

key. If increases, data complexity increases. Therefore, an adversary wants to set

 and to a very small value. To do this, an adversary should choose big

enough. If increases, the difference between and increases. Therefore,

and get smaller. However, since is the number of the input pairs, if

increases, the data complexity of the attack increases. Therefore, the adversary

should determine the optimal value. The optimal value can be determined by

setting and very close to zero. The false-alarm and non-detection

probabilities can be found by solving the equations (1.1) and (1.2).

 ∑(

*

 ∑(

*

1.4. Truncated Differential Cryptanalysis

Truncated differential cryptanalysis was introduced by (Knudsen, 1994). It can be

considered as a special type of differential cryptanalysis. The differential analysis

7

aims to guess -bit output difference of -bit ciphertext pairs. On the other hand, in

truncated differentials, all input and output bit differences are not explicitly defined.

The aim is to find only part of the difference of outputs. Even obtaining 1-bit output

difference is sufficient.

1.5. Impossible Differential Cryptanalysis

Impossible differential cryptanalysis was first introduced in Crypto ’98 Rump

Sessions by (Biham, Biryukov, et al., 1998). Thereafter, Biham, Biryukov and

Shamir performed an impossible differential attack (Biham et al., 1999) on reduced

round Skipjack (NIST, 1998). There are many examples of impossible differential

attacks on block ciphers. In (Tsunoo et al., 2008), they found 9-round impossible

differentials of CLEFIA (Shirai et al., 2007) which was developed by Sony

Corporation. In (Tezcan, 2016), 5-round impossible differential was found on

ASCON (Dobraunig, Mendel, et al., 2019), which is one of the finalists of the

NIST’s Lightweight Cryptography Competition.

Impossible differential cryptanalysis aims that the round truncated differential

cannot be obtained at the output. The probability which was mentioned in Section

1.3 should be zero for an impossible differential attack. To obtain impossible

differential distinguisher, the miss-in-the-middle technique is used. Firstly, input

difference is given to input pairs and then input difference leads to difference

after rounds in the forward direction with probability one. Similarly, output

difference leads difference after rounds in the backward direction with

probability one. If and do not match in the middle, it can be said that input

difference does not become output difference after in the forward direction

with probability one. Fig. 1.4 shows the miss-in-the-middle approach.

Figure 1.4: Miss-in-the-middle technique

The cipher can be distinguished from a random permutation thanks to the impossible

differentials. If it is observed that the input difference leads output difference

after rounds, it can be said that the output does not belong round

version of the cipher. For round impossible differential distinguisher where
 , assume that the output difference has many fixed bits. The probability of not

obtaining output difference is for one pair of random permutation output.

If we use pairs, the probability becomes

 To find the

approximate value of this probability, equation (1.3) is used.

 (

*

The approximation can be obtained by using the equation (1.4).

8

In this thesis, we found 6-Step and 7-Step distinguisher of Shadow-512 permutation

by using impossible differential cryptanalysis. The detailed explanations will be

given in Sections 4.3 and 4.4 about these distinguishers.

1.6. Improbable Differential Cryptanalysis

Improbable differential cryptanalysis was first introduced in (Tezcan, 2010). Tezcan

performed 13,14,15-round improbable differential attacks on CLEFIA (Shirai et al.,

2007), which has 128-bit,192-bit and 256-bit key lengths, respectively. In (Tezcan,

2014), Tezcan performed a 13-round improbable differential attack on PRESENT

(Bogdanov et al., 2007), which is included as an international standard in (ISO/IEC

29192-2:2019, 2019).

Some differentials are less observable than a random permutation at the output.

These kinds of differentials establish the idea of improbable differentials. Typically,

an attacker desires to obtain output difference with high probability than random

permutation when the input difference is for differential attacks. For improbable

differential attacks, the purpose is to find any output difference other than if the

input difference is . Let us denote the probability of observing non output

difference as . The probabilities of observing transition are denoted as

and for a random permutation and the cipher, respectively. For improbable

differential, an attacker expects that since output difference is less likely to

exist for the cipher than random permutation. To conclude, the probability of

observing output difference if input difference is can be defined according to

equation (1.5).

An attacker should ensure that input difference leads output difference with a

low probability than random permutation. On the contrary case, becomes bigger

than . Besides, denotes the probability of observing any output

difference other than , it is expected that for an impossible differential

because input difference never leads output difference. It makes , which

means is impossible. Therefore, it can be said that the impossible differential

attacks are a special case of improbable differential attacks.

In (Tezcan, 2010), Tezcan introduced almost miss in the middle technique. It looks

like a miss-in-the-middle technique; however, the probabilities and are different

than 1. After round in the forward direction, input difference leads difference

with the probability and after rounds in the backward direction output

difference leads difference with probability . If and do not match in the

middle, it can be said that transition cannot be obtained with the probability

 after rounds. This approach can be used to cover more rounds

than impossible differentials. If one or more differentials are added to top and bottom

9

of impossible differential, the improbable differential can cover more rounds with

probability as in the almost miss in the middle technique. This is called

expansion method. Although the expansion method helps an attacker find longer

differentials to attack more rounds, it increases the data and time complexities. Since

 increases, data complexity increases. Therefore, more time is needed to perform

the attack. Fig. 1.5 shows the expansion method.

Figure 1.5: Expanded Improbable Differentials

1.7. Lightweight Cryptography Competition

Internet of Things (IoT) is a concept that includes sensor networks, embedded

systems and software that are connected and communicated over the Internet. In

recent years, IoT devices are widely used in areas such as smart homes, medical and

health care systems, agriculture, monitoring systems, transportation, etc. Some of

these devices have a strong capability to perform larger computations on them;

however, some of IoT devices are highly-constrained in terms of memory, power

consumption and performance. Sensors, RFID tags, smart cards, key fobs, electronic

toll collection systems, biometric systems are the major examples that use highly-

constrained devices. For example, some smart cards work with the absence of an

internal power supply like a battery and they use electromagnetic fields to be

powered on when they are attached to the RFID reader. Since the number of these

types of constrained devices increases day by day, their security issues have become

one of the crucial topics. Their data should be encrypted to provide confidentiality,

integrity and availability. Cryptographic algorithms can be used to satisfy the

security concern about them. However, many constrained devices use low-power

MCUs which also have a small size of RAM. Implementation of a cryptographic

algorithm on them can be considered as an overhead for their actual purposes. In

fact, it can be said that a cryptographic algorithm such as AES (Daemen & Rijmen,

2002) that uses many logic gates and needs larger RAM is not suitable on these

constrained devices. Therefore, algorithms that have smaller permutations, smaller

block and key sizes, simpler key schedules are more favorable for constrained

devices. Such algorithms are called lightweight cryptographic algorithms. Most

lightweight designs satisfy different implementation constraints and serve different

purposes. PRESENT (Bogdanov et al., 2007), HIGHT (D. Hong et al., 2006) and

CLEFIA (Shirai et al., 2007) aim low hardware footprint in their lightweight designs.

On the one hand, PRIDE (Albrecht et al., 2014) and SPECK (Beaulieu et al., 2015)

aim low memory usage on embedded processors. In (Alex Biryukov & Perrin, 2017),

they performed a survey about lightweight designs to systematize the concept of

lightweight algorithms by investigating more than 100 designs.

The most comprehensive and worldwide project about lightweight cryptography was

initiated by the National Institute of Standards and Technology (NIST) in 2013 to

standardize lightweight cryptographic algorithms for constrained devices. In 2015,

10

First Lightweight Cryptography Workshop was held by NIST to define the

requirements of lightweight cryptography. In 2016, NIST held the second

Lightweight Cryptography Workshop, and then in 2017, NIST published a report on

Lightweight Cryptography (McKay et al., 2017). Since current NIST’s cryptographic

standards do not meet some requirements, which are performance, side-channel

resistance, hardware and software specific metrics for constrained devices, they

decided to start a competition for lightweight cryptography. In 2018, they announced

submission requirements for candidate algorithms. The minimum acceptability

requirements that were defined in (NIST, 2018) are as follows:

 AEAD requirements: NIST expected that the candidate algorithms had

authenticated encryption with associated data scheme (AEAD). The

minimum size of key, nonce and tag should be 128-bit, 96-bit and 64-bit,

respectively. The candidate AEAD algorithms should provide confidentiality

against forgery attacks if the nonce is used only once. Besides, plaintext

should not be produced in the decryption process if the tag is invalid.

 Hash function requirements: It is optional that candidate algorithms can

have hashing functionalities. The minimum output length should be 256-bit.

The hash function should be resistant to collision and second preimage

attacks. At least 2
112

 computations can be performed for attacks on the hash

function.

 Design requirements: The AEAD algorithm and optional hash function

should be suitable for constrained devices. Algorithms should be designed by

considering the performance on 8-bit, 16-bit, 32-bit microcontrollers, FPGAs

and ASICs. The algorithms which are resistant against side-channel attacks,

timing attacks, simple and differential power analysis are desired.

Side-channel resistance, fault attack resistance, cost metrics (area, memory),

performance measurements (latency, throughput, power consumption), suitability for

both hardware and software are evaluation criteria that NIST defined. NIST also

stated that third-party analysis of algorithms is desirable. After all, in 2019, 57

different algorithms were submitted to the competition and NIST approved 56 of

them as first round candidates. The designs of candidate algorithms were shared with

the public for third-party analysis.

In October 2019, NIST published the status report on first round candidates (Turan et

al., 2019) and 32 of candidate algorithms were chosen as round 2 candidates. NIST

gathered the criteria of selection in two main topics, which are maturity of the

candidates and cryptanalysis of the candidates. Some algorithms were eliminated

from the competition since their algorithms had no third-party analysis. NIST also

stated that adequate analyses were not made to their designs by themselves to satisfy

their security claims. Therefore, these algorithms were considered immature to

standardize. On the one hand, some of the algorithms were eliminated from the

competition due to third-party analyses. Significant weaknesses were found in their

designs. The round 2 candidates are shown in Table 1.1.

11

Table 1.1: Round 2 Candidates of NIST's Lightweight Cryptography Competition

ACE ASCON COMET DryGASCON

Elephant ESTATE ForkAE GIFT-COFB

Gimli Grain-128AEAD HyENA ISAP

KNOT LOTUS-AEAD mixFeed ORANGE

Oribatida PHOTON-Beetle Pyjamask Romulus

SAEAES Saturnin SKINNY-AEAD SPARKLE

SPIX SpoC Spook Subterranean 2.0

SUNDAE-GIFT TinyJambu WAGE Xoodyak

After the analysis and performance evaluation of round 2 candidates, in March 2021,

NIST announced the finalists of the lightweight standardization process. ASCON

(Dobraunig, Mendel, et al., 2019), Elephant (Beyne et al., 2019), GIFT-COFB

(Banik et al., 2019), Grain128-AEAD (Hell et al., 2019), ISAP (Dobraunig,

Eichlseder, et al., 2019), Photon-Beetle (Bao et al., 2019), Romulus (Iwata et al.,

2019), SPARKLE (Beierle et al., 2019), TinyJambu (Huang, 2019), and Xoodyak

(Daemen et al., 2019) are the finalists of the competition. ASCON (Dobraunig,

Mendel, et al., 2019) was also the first choice of the lightweight applications

category of the CAESAR competition (Cryptographic competitions: CAESAR

submissions, 2014). ASCON (Dobraunig, Mendel, et al., 2019), Elephant (Beyne et

al., 2019), ISAP (Dobraunig, Eichlseder, et al., 2019), Photon-Beetle (Bao et al.,

2019), SPARKLE (Beierle et al., 2019), Xoodyak (Daemen et al., 2019) are the

finalists that have permutation based algorithm. GIFT-COFB (Banik et al., 2019) and

TinyJambu (Huang, 2019) have block cipher based designs. Romulus (Iwata et al.,

2019) is based on a tweakable block cipher design. Among finalist algorithms, the

only algorithm that is based on stream cipher structure is Grain128-AEAD (Hell et

al., 2019). It is expected that the final round will end up in a year.

1.8. Our Contribution and the Structure of the Thesis

In this thesis, we have investigated the Spook (Bellizia et al., 2019) algorithm,

which is one of the round 2 candidates of NIST’s Lightweight Cryptography

competition. Spook is an AEAD algorithm that is based on a tweakable block cipher

and duplex sponge construction. Also, Spook uses Shadow-512 as an internal

permutation. In this thesis, we have worked on Shadow-512 permutation to find a

distinguisher.

In Chapter 2, the design specifications of Spook and Shadow-512 permutation will

be explained. In Chapter 3, the 5-Step truncated differential distinguisher on

12

Shadow-512 with probability one that was first introduced in (Derbez et al., 2020)

will be explained. Although Shadow-512 permutation was designed as 6-Step, they

found a distinguisher that covers more than six steps which can be considered as a

round-extended variant of Shadow-512. They found 6-, 7-Step truncated differential

distinguishers with probability 2
-16.245

. In Chapter 4, we tried finding impossible

differential distinguishers of Shadow-512. We have found 6-, 7-Step impossible

differential distinguishers by using the 5-Step truncated differential of (Derbez et al.,

2020). Also, we have introduced the 8-Step improbable differential distinguisher.

This is the first distinguisher that is found on Shadow-512 that covers 8-Step if

Shadow-512 is considered as 8-Step.

13

CHAPTER 2

OVERVIEW OF SPOOK

In 2015, NIST initiated a Lightweight Cryptography project to standardize

lightweight cryptography algorithms for constrained devices. Spook (Bellizia et al.,

2019) is one of the Round-2 candidates of the competition among 32 different

algorithms. The main purpose of Spook is to provide a secure design in terms of both

low-cost implementation and side-channel analysis. Spook was designed as duplex

sponge-based (Bertoni et al., 2012) authenticated encryption with associated data

algorithm that operates in S1P mode of operation (C. Guo et al., 2019) to provide

leakage resistance against side-channel attacks. The S1P mode of operation, which is

Sponge One Pass, provides that data is processed only once to produce both

ciphertext and tag in the encryption process. It is a significant advantage for a

lightweight design. Moreover, the secret key is only used twice for both encryption

and decryption processes in the S1P mode of operation. In (Daemen et al., 2017),

they stated that the duplex sponge construction is beneficial to implement

authenticated encryption algorithms in terms of providing leakage resistance. Also,

the S1P mode of operation uses Tweakable Block Cipher Clyde-128 and Shadow-

512 permutation that are both based on LS-design (Grosso et al., 2015), which

consists of L-boxes and bitslice S-boxes. However, some improvements are made to

previous LS-designs by using word-level L-Boxes instead of table look-up L-boxes.

The LS-design of Clyde-128 and Shadow-512 has efficient slicing and masking to

provide security against side-channel attacks, as mentioned in (Goudarzi & Rivain,

2017; Gross et al., 2017). Moreover, the Tweakable Block Cipher (TBC) guarantees

data integrity in case of data leakage. TBC also provides multi-user security with the

usage of randomly chosen public tweak.

In this chapter, firstly S1P mode of operation will be explained. Then Clyde-128

Tweakable LS-design and Shadow-512 permutation will be introduced. The

components of Clyde-128 and Shadow-512 will be described in detail.

2.1. S1P mode of operation

S1P mode of operation, ―Sponge One Pass,‖ is a leakage-resistant lightweight design

that was introduced in (Berti et al., 2019) for AEAD schemes. S1P provides security

14

in case of nonce misuse and also makes the algorithm more resistant against side-

channel leakage.

Figure 2.1: S1P mode with TBC E

Note. S1P mode with TBC E. Reprinted from ―Spook: Sponge-based leakage-

resistant authenticated encryption with a masked tweakable block cipher,‖ by

Bellizia et al., Lightweight Cryptography Standardization Process round 2

submissions, NIST. Reprinted with permission.

Fig. 2.1 shows the S1P mode of operation of Spook. Spook has a duplex sponge

construction, so r and c represent the rate and capacity bits, respectively. The

plaintext is denoted as M and M is divided into l blocks whose length is equal to r-bit

except for the last block. The length of the last block of plaintext is between 1-bit and

r-bit. A denotes the associated data and likewise the plaintext, associated data divided

into bits of blocks. The nonce is denoted as N, which is bits. Randomly chosen

secret key K is n bits and public tweak P is bits. The last bit of the public

tweak specifies whether single-user or multi-user. If the last bit of the public tweak P

is set to 1 and the other bits of P is chosen randomly, the multi-user security is

selected. On the other hand, the public tweak is set to zero for single-user security.

For a multi-user version, public tweak is randomly chosen. The Tweakable Block

Cipher, which is denoted by E, processes n-bit blocks. It takes , , K to

produce n-bit initial seed . denotes the permutation that takes -bit input.

The primary parameters of Spook are .

Although each data that is processed in the S1P operation is considered as bitstring,

Spook takes the input as bytestring. Therefore, firstly, bytestrings of input data are

transformed to bitstrings. After the encryption or decryption process, the bitstrings of

output data are transformed to bytestring to produce ciphertext or plaintext,

respectively.

Encryption starts with a TBC call which is E. It takes and as inputs

and produces n-bit as an initial seed. can be considered as a key for duplex

sponge construction to produce ciphertext blocks. Detailed explanations about TBC

will be given in the following section. Concatenation of and which is

 can be considered as the initialization vector (of the algorithm.

The permutation state is composed of and , which is . After the first

permutation part, -bit associated data blocks except for the last block are processed

with the rate bits of the state if associated data exists. The last block of associated

data is padded with before the processing with the state. After processing the

associated data, the state is XORed with and then permutation is

applied to the state. Now, the encryption procedure starts. The first r -bit of the state

15

is XORed with the first plaintext block to produce the first ciphertext block. Then,

capacity bits of the state are concatenated with the ciphertext to obtain 512-bit state.

The permutation is applied to the state and the other plaintext blocks are processed in

the same way to produce ciphertext blocks. After that, there is another TBC call at

the end of the operation to produce the tag . The inputs of the second TBC call are

 and secret key . is n-bit and is (n-1)-bit. is the first bit of

the permutation state. The purpose of the concatenation of 1 with is to ensure that

the tweak is different from the first TBC call. At the end of the procedure, the

ciphertext, which is denoted by is obtained by concatenation of ciphertext blocks

and the tag.

Decryption starts with a TBC call to produce n-bit as an initial seed, likewise in

the encryption. At the end of the decryption operation, there is an inverse TBC call

which takes the tag as an input to obtain . If , the operation starts to

generate the plaintext. It can be said that the secret key K is only used twice for the

encryption or decryption process. Moreover, there is not an extra effort to generate

the tag while data is processing. Therefore, it can be said that the S1P mode of

operation is single-pass.

2.2. Clyde-128, Tweakable LS-Design

As mentioned in the previous section, the S1P mode of operation uses a Tweakable

Block Cipher to generate the authentication tag. The Tweakable LS-design of Clyde-

128 is a part of SCREAM (Grosso et al., 2014) authenticated encryption with

associated data algorithm. The TLS-design is a tweakable variant of LS-designs

(Grosso et al., 2015) that use efficient masking and bitslice S-Boxes to mitigate the

risks of side-channel attacks. Such LS-Designs work on -bit state, which is denoted

by . Here denotes the size of the S-Box and denotes the number of the

columns. L-Box which is linear layer of Clyde-128 is composed of two rows and its

size is . The state consists of rows and columns. For Clyde-128, the design is

defined as and and therefore, the state is 128-bit. The step number of

Clyde-128 is and each step consists of two rounds. Each round starts with an

S-Box operation, then L-Box is applied. After that, round constant is added to state.

Besides, the Tweakable Block Cipher algorithm of Clyde-128 uses a tweakey.

Tweakey framework introduces a new parameter tweak that provides larger key

space to a block cipher. Tweakey (Jean et al., 2014) is generated from the master

key K and tweak T. The tweakable block cipher which was first introduced in

(Liskov et al., 2011) takes the plaintext, key and tweak as input to produce

ciphertext. The tweak can be public. The tweak addition also provides resistance

against to related-key attacks. Clyde-128 uses the SCREAM’s (Grosso et al., 2014)

tweakey scheduling algorithm that takes the 128-bit key and 128-bit tweak. Firstly,

the tweak is parsed into two 64-bit pieces such that and then three

different tweakeys are generated according to formulas (2.1), (2.2) and (2.3).

Tweakey is denoted by TK.

16

In the S1P mode of operation, Clyde-128 takes and as inputs.

According to reference C code of Spook, is called the padded nonce. is

used as a secret key and is used as a tweak. In each step, a different tweakey

is used. Firstly, padded nonce and the first tweakey are XORed to construct the state

S. Then, round function is applied to the state. The second tweakey addition is

applied at the end of the round function. This process is applied in each step. The

components of the round function of Clyde-128 will be explained in the following

sections.

2.3. Shadow-512

Shadow-512 can be considered as the permutation layer of the S1P mode of

operation of the Spook algorithm. Shadow-512 also uses a variant of LS-designs,

which is called multiple LS-designs. Shadow-512 works on -bit state.

Here denotes the number of LS-designs which we call a bundle. denotes the size

of the S-box and denotes the number of columns. For Shadow-512, ,

and . The size of the state is 512-bit. In other words, there are four 128-bit

bundles in the state. Shadow-512 permutation has a Substitution

Permutation Network (SPN). The 512-bit state is updated by iterating six steps. Each

step consists of two rounds which are Round A and Round B. Round A consists of S-

Box, L-Box and round constant addition parts. Round B consists of S-Box, D-Box

and round constant addition parts. There is also another variant of Shadow, which is

Shadow-384. It has 384-bit state. The only difference between Shadow-512 and

Shadow-384 is in the D-Box layer since Shadow-384 consists of three 128-bit

bundles. In Fig. 2.2, the Shadow-512 permutation is shown.

17

Figure 2.2: Illustration of Shadow-512

In Fig. 2.3, the byte organization of Shadow-512’s state is shown according to the

reference C code of Shadow-512. Each number indicates the index of the byte input

in the array.

Figure 2.3: State of Shadow-512

Each bundle consists of four 32-bit words and has 32 S-Boxes. The bit organization

of a bundle is shown in Fig. 2.4.

 denotes a bit. denotes the row index for

 , j denotes the column index for .
 denotes the most

significant bit of the S-Box .

18

Figure 2.4: Bit organization of a Shadow-512's bundle

2.4. Components of Clyde-128 and Shadow-512

Clyde-128 and Shadow-512 use the same S-Box, L-Box and round constant addition

part in their LS-designs. Since Shadow-512 has a multiple LS-design, it needs a

diffusion layer which is D-Box to mix bundles with each other.

2.4.1. S-Box Layer

S-box is the non-linear part of both Shadow-512 and Clyde-128 designs. It provides

confusion. 4x4 S-Box is used in the Shadow-512 and Clyde-128 design. The S-box is

the modified S-Box of Skinny (Beierle et al., 2016). NOR gates in the Skinny S-Box

are replaced with AND gates. There are 128 S-Boxes in a Shadow-512’s state and 32

S-Boxes in a Clyde-128’s state. Each column in the state is the input of an S-Box. S-

box and inverse S-Box are shown in Table 2.1.

Table 2.1: S-Box and inverse S-Box of Spook in table representation

S-Box can also be described with four AND and four XOR operations. The formula

of S-Box and inverse S-Box is given below. denotes the S-Box operation.

 represent the four 32-bit rows of a Bundle and represent the

four 32-bit rows of output.

S-Box Implementation: S
-1

-Box Implementation

19

2.4.2. L-Box Layer

L-Box is the linear part of both Shadow-512 and Clyde-128 designs. Each bundle

consists of four 32-bit words. Two L-Boxes are used in a bundle. It means that the

first and second rows are the L-Box inputs and also the third and fourth rows are the

inputs of another L-Box. L-Box design includes right rotation and XOR operation,

which helps prevent cache attacks (Tromer et al., 2010).

The formula of L-Box is given below. The inputs of the L-Box are denoted as and

 and the outputs of the L-Box are denoted as and where or

for a bundle. , , and are considered as the four 32-bit rows of a Bundle and

 , , and are considered as the four 32-bit rows of output. The circulant matrix

is denoted by and its input is given in the formula below.

 (

)

In this thesis work and reference C code of Spook, L-Box and inverse L-Box were

implemented as word-level right rotations which are denoted as and 32-bit

XORs according to Table 2.2.

Table 2.2: L-Box and inverse L-Box of Shadow-512

L-Box Inverse L-Box

2.4.3. Round Constant Addition

Clyde-128 and Shadow-512 uses 4-bit round constants that are generated from a 4-

bit LFSR. Round constant is added to 0
th
 column, which is in Clyde-128 design.

20

For Shadow-512, round constant is added to different columns of different bundles.

In other words, the round constant is added to
column of bundle such that

to , to , to , to .

Shadow-512 and Clyde-128 are designed as six steps. Since each step consists of two

rounds: Round A and Round B, there are twelve round constants that are generated

from LFSR. In Table 2.3, round constants of each step are shown. The first bit

represents the least significant bit.

Table 2.3: Round constants of Shadow-512

2.4.4. D-Box Layer

D-Box is a diffusion layer that is used to mix four bundles. It is a diffusion part of

Shadow-512 permutation. Clyde-128 does not have a D-Box layer. S-Box, L-Box

and round constant addition only affect a bundle itself. Due to the D-Box layer, each

bundle diffuses to other bundles. D-Box operation is based on a near-MDS matrix

which was used in (Banik et al., 2015). The matrix of D-Box is given below.

 denotes a 128-bit bundle for .

 (

) (

)

In this thesis and in the reference C code of the Spook, D-Box is implemented

according to the formula given below.

According to the formulas above, it is obvious that three of four bundles are XORed

with each other to construct the other bundle. It means, Bundle-0, Bundle-1 and

Bundle-2 are XORed to obtain Bundle-3, Bundle-0, Bundle-1 and Bundle-3 are

21

XORed to obtain Bundle-2. Bundle-0, Bundle-2 and Bundle-3 are XORed to obtain

Bundle-1. Bundle-1, Bundle-2 and Bundle-3 are XORed to obtain Bundle-0. Since

near-MDS matrix is an involutory matrix which is D
2
 = I, inverse D-Box

operation is identical to D-Box operation. Therefore, the formulas given above are

valid for inverse D-Box operation.

2.5. Security Claims of Spook

In (Bellizia et al., 2019), the authors of Spook stated the security of the algorithm

based on three main components, which are S1P mode of operation, The Clyde-128

TBC and Shadow-512 permutation. They stated that the security of the S1P mode of

operation relies on the assumption that the secret key of TBC cannot be leaked. In

addition, the secret key is only used twice in both the encryption and decryption

process. They referred to (C. Guo et al., 2019) for proof of their assumptions. They

performed the linear and differential attacks on Clyde-128 by using the wide-trail

strategy (Daemen & Rijmen, 2001). They implied that the best linear/differential

characteristics were found with the probability 2
-128

 after four steps. Since Clyde-128

is designed as six steps, they believed that the Clyde-128 is resistant against

linear/differential attacks. Also, they referred to (Boura et al., 2011) for the upper

bound of the algebraic degree and they stated that five rounds (two and a half steps)

are enough to reach a maximum algebraic degree. Therefore, they believed that the

six steps of Clyde-128 provide security against algebraic attacks (Courtois &

Pieprzyk, 2002), cube attacks (Dinur & Shamir, 2009) and division property which is

a property of integral attacks (Todo, 2015). For division property, they used the

MILP method (Xiang et al., 2016), a tool to search integral distinguishers and found

a 4-Step integral distinguisher of Clyde-128. From the point of invariant attacks,

which was previously considered to be related to the S-Box (J. Guo et al., 2016), they

chose the round constants of Clyde-128 and Shadow-512 by taking into

consideration of (Beierle et al., 2017). Since the round constants are invariant parts

of the linear layer and have a major role against invariant attacks, they wanted to

increase the dimension of the invariant subspaces of the linear layer. To provide

security against the chosen-tweak attack for Clyde-128 TBC, they determined the

minimum number of rounds required and doubled the number of rounds by using the

approach in (J. Guo et al., 2011). For subspace trail analysis introduced in (Grassi et

al., 2017), the authors used algorithmic approach which was introduced in (Leander

et al., 2018) to compute the best subspace trails for Clyde-128. They stated that they

found one and a half step subspace trails for Clyde-128. For Shadow-512

permutation, since they wanted to obtain better performance results, they did not aim

to meet strong security properties from Shadow-512. They stated that they obtained

the upper bound of 2
-128

 for linear characteristics after two steps. For the tag

generation, 255 bits are used and Shadow-512 permutation should provide collision

resistance for 255 bits. The authors said that the best truncated differential

characteristics of Shadow-512 cannot be found with the probability better than 2
-385

after six steps.

The authors of Spook also stated that Shadow-512 could be used as four steps instead

of six steps. It can be said that this statement is the motivation of (Derbez et al.,

2020) and this thesis. In (Derbez et al., 2020), they found 5-Step, 6-Step and 7-Step

22

truncated differential distinguishers. Moreover, they performed a 4-Step forgery

attack. Their truncated differentials will be explained in detail in Chapter 3. In this

thesis, we found 6, 7-Step impossible differential distinguisher of Shadow-512. In

addition, we obtained 8-Step improbable differential distinguisher of Shadow-512,

which is the largest distinguisher that is provided for this permutation.

23

CHAPTER 3

CRYPTANALYSIS RESULT ON SPOOK BRINGING FULL-ROUND

SHADOW-512 TO THE LIGHT

In Chapter 2, the Spook (Bellizia et al., 2019) algorithm and its components were

explained. As mentioned in Section 2.3, Spook uses an SPN permutation whose

name is Shadow-512. In this chapter, the cryptanalysis result of Shadow-512 that

was introduced in (Derbez et al., 2020) will be explained. They found practical

distinguishers of Shadow-512 permutation. They presented a truncated differential

distinguisher with probability one that covers five steps of Shadow-512. This 5-Step

distinguisher was used to find our impossible and improbable distinguishers that will

be explained in Chapter 4. They also found a second truncated differential

distinguisher that covers six steps of Shadow-512. In addition, they showed that there

is a distinguisher that covers seven steps as if it is a round-extended version of

Shadow by adding one more round at the bottom of the 6-Step truncated differential.

They said that all these distinguishers are practical and can be verified

experimentally. They also performed a forgery attack against four steps of Shadow-

512 in a nonce-misuse scenario. They stated that they could obtain collisions on four

steps Shadow-512 by using the nonce three times allowed by (Berti et al., 2017).

However, they could not use their 5-Step, 6-Step, and 7-Step truncated differential

distinguishers on forgery attacks because the S1P mode of operation does not allow

them to control capacity bits in the input. In this chapter, firstly, preliminary

knowledge about the construction of truncated trails will be given. The concepts of

Super S-Box and 3-Identical state will be explained. Secondly, 5-Step truncated

differential distinguisher will be shown. Thirdly, 6-Step and 7-Step truncated

differential distinguishers will be described.

24

Table 3.1: Notation of Chapter 3

3.1. Preliminaries of Distinguishers

In this section, the base elements that help the authors find truncated differentials

will be introduced. Firstly, the Super S-Box structure will be described. Then, the 3-

Identical State and its usage will be explained for Shadow-512 permutation.

3.1.1. Super S-Box

Shadow-512 permutation is considered as SPN. As mentioned in Chapter 2, each

step consists of two rounds which are Round A and Round B. Round A comprises S-

Box, L-Box and round constant addition parts. Round B contains S-Box, D-Box and

round constant addition parts. In (Derbez et al., 2020), they introduce a new layer

which is called Super S-Box, by separating the D-Box layer from the other layers.

Since only the D-Box layer mixes the bundles and the other layers affect only a 128-

bit bundle, each step can be represented by a Super S-Box and D-Box layer. To

conclude, 512-bit Shadow state uses four 128-bit Super S-Boxes and one 512-bit D-

Box within a step.

3.1.2. 3-Identical State

3-Identical state means that inputs of three of four bundles are set to the same value

before the Super S-Box operation of a step. In other words, the same 128-bit value is

used for three bundles in a state. Normally, it is expected that the 3-Identical state

cannot be preserved after the first round constant addition part. As mentioned in

Section 2.4.3, the round constant is added to different columns for different bundles.

Some conditions must be satisfied to keep the 3-Identical State after a Super S-Box

and D-Box operation. Let be 512-bit 3-Identical Shadow state such that
 . Since Bundle-0, Bundle-1 and Bundle-2 are in the 3-Identical state, they

will keep the 3-Identical state after the S-Box and L-Box operation. Therefore, the

state will be () after L-Box.

25

The State after L-Box:

The State after round constant addition: Round constant is added according to

bundle index.

The State after second S-Box:

The State after D-Box: Three of four bundles are XORed with each other.

The State after round constant addition: Round constant is added according to

bundle index.

26

As can be seen that to keep the 3-Identical state after one step following equations

should be satisfied:

 (3.1)

 (3.2)

 (3.3)

The exact value of round constants and are known for each step index.

Therefore, it is possible to satisfy the equations (3.1), (3.2) and (3.3) for some steps

with some probability. The authors of (Derbez et al., 2020) showed that if the input is

3-Identical, the probability of obtaining 3-Identical output after one step, according

to Table 3.2. The probabilities do not depend on the bundle indices.

Table 3.2: The probability of 3-Identical output when inputs are 3-Identical

The analysis shows that satisfying these three equations depends on the round

constants that are used in the step and the round constants depend on the step index.

This type of analysis is known as exploiting the sparse round constants. There are

some previous examples of exploiting sparse round constants. They are used in

rotational cryptanalysis (Khovratovich et al., 2015), differential attacks (Peyrin,

2010), self-similarity (Bouillaguet et al., 2010) and invariant subspace attacks

(Leander et al., 2011, 2015).

3.2. 5-Step Truncated Differential Distinguisher of Shadow-512

In (Derbez et al., 2020), they found 5-Step truncated differential distinguisher of

Shadow-512 permutation with probability one. The 5-Step truncated differential

distinguisher can be considered as a rebound attack (Mendel et al., 2009). They

found a distinguisher by exploiting D-Box. The 5-Step truncated differential that is

shown in Fig. 3.1 starts from Step-2 with the 3-Identical state and two steps are

applied both forward and backward direction with probability one. Algorithm-1

summarizes the 5-Step distinguisher. In this thesis, we found 6-Step and 7-Step

impossible differential distinguishers and 8-Step improbable differential

distinguisher of Shadow-512 permutation by using this 5-Step truncated differential.

Therefore, it can be considered as the starting point of this thesis work.

27

Figure 3.1: 5-Step Truncated Differential of Shadow-512

 with probability one

i. Choose a random pair such that
 and (

 in Step-2. must be

set to zero on the 0th, 1st,2nd,3rd columns of a bundle.

ii. Choose a random state

iii. Compute
 and

 for . Set the states at Step-2

such that

iv. Iterate Step-4 and Step-5 on and
 to obtain in Step-5

28

According to Algorithm-1, the 5-Step truncated differential starts from Step-2 with

the 3-Identical state. In other words, the input pairs of Bundle-0, Bundle-1 and

Bundle-2 are chosen the same, so their difference values become). The

purpose is to obtain three identical differences for Bundle-0, Bundle-1 and Bundle-2

just before the D-Box layer of Step-2. Super S-Boxes are slightly different on

columns that round constants are added. For a bundle index j, the round constant is

added to j
th
 column of a bundle. Therefore, 3-Identical State may not be preserved

after the round constant addition part as mentioned in Section 3.2.2. However, the

differences of Bundle-0, Bundle-1 and Bundle-2 must still be the same because

round constant addition is just an XOR operation that does not change the difference.

The impact of the round constant addition is observed in the second S-Box layer that

is done right after the round constant addition. Since round constants are added to

different columns of different bundles, the input of the S-Boxes will be different.

The same input difference can lead to different output differences in the S-Box layer.

Therefore, even if they start with three identical input differences in Step-2, they may

not obtain three identical output differences at the end of Super S-Box. To achieve

this, they choose the input difference so that does not diffuse to columns that

round constants are added and the output difference will be . It is obvious that

must be set to zero on columns that round constants are added. The proof of this

approach is explained below.

Let and be two inputs for Bundle-0, Bundle-1 and Bundle-2 at the

beginning of Step-2. After the L-Box layer, the output difference and output pairs are

still the same for Bundle-0, Bundle-1 and Bundle-2 because the same operation is

applied to the same bundles.

 () and ()

After the L-Box layer, round constants are added to bundles according to their

bundle index. Then S-Box operation is applied.

The differences of Bundle-0 and Bundle-1 and Bundle-2 are identical after the Super

S-Box layer:

29

In a nutshell, if the output difference of is set to zero on columns that round

constants are added, 3-Identical State leads to three identical output differences after

the Super S-Box layer. Therefore, the input difference of Step-2 which is)

will become after Super S-Box layer.

As mentioned in Section 2.4.4, three of four bundles are XORed with each other to

build the other bundle in the D-Box layer. In other words, the D-Box layer mixes the

bundles to provide diffusion. After the D-Box layer of Step-2, the difference
 will become .In Step-3, the difference will become
 In the D-Box layer of Step-3, Bundle-3 difference, which is will diffuse

to the other bundles and the difference will become . The differences of

Bundle-0, Bundle-1 and Bundle-2 are equal at the beginning of Step-4; however,

they are not in 3-Identical State. Therefore, after the Super S-Box layer of Step-4,

their differences will be different from each other. It will be . The

difference values of Bundle-0, Bundle-1 and Bundle-2 will be different from each

other and the difference of Bundle-3 will be definitely zero after the Super S-Box of

Step-4 with probability one. Now, we are going back to Step-2 to apply two steps

inverse operation in the backward direction. The difference) will become

 after the inverse D-Box layer of Step-1. Then inverse S-Box operation is

applied. The difference at the beginning of Step-1 will be . The difference

of Bundle-3 will diffuse to other bundles in the inverse D-Box of Step-0. The

difference value will become . In Step-0, the last operation, which is

inverse S-Box is applied to bundles and the difference is obtained. The

difference value of Bundle-0, Bundle-1 and Bundle-2 will be different from each

other, but the difference of Bundle-3 will be definitely zero at the beginning of Step-

0. In a nutshell, if the difference of Step-2 is and is set to zero on the

first four columns, the difference of Bundle-3 will be zero in both Step-0 and Step-5

with probability one.

To sum up, in (Derbez et al., 2020), they found a practical distinguisher that covers

five steps of Shadow-512 permutation with probability one. The truncated trail starts

from Step-2 with the 3-Identical state; however, the 3-Identical state is not preserved

at the beginning of Step-3. In Step-4, the difference will be . The

difference values of Bundle-0, Bundle-1, and Bundle-2 are different from each in

Step-4. Therefore, the authors stated that the truncated trail could not cover more

than five steps with probability one. They also noted that the 5-Step truncated

differential distinguisher was verified experimentally. It can be used to distinguish

the five steps of Shadow-512 from a random permutation by using a pair of inputs.

30

3.3. 6- Step and 7-Step Truncated Differential Distinguisher of Shadow-512

In (Derbez et al., 2020), they also found 6-Step and 7-Step truncated differential

distinguisher by using their 5-Step truncated differential distinguisher that was

explained in the previous section. 6-Step truncated differential distinguisher covers

full permutation and it can be extended to distinguish 7-Step of Shadow-512, which

is considered as round-extended version. Figure 3.2 shows the 7-Step truncated

differential distinguisher.

Figure 3.2: 7-Step Truncated Differential of Shadow-512

31

Let and be 512-bit Shadow-512 input messages. They found a distinguisher for

6-Step Shadow-512, such as

 with probability 2
-16.245

.

Also, they found a distinguisher for 7-Step Shadow-512, such as

 with probability 2
-16.245

.

Algorithm-2 summarizes the 7-Step truncated differential distinguisher.

i. Choose a difference
 . Set to zero except for 22nd and 23rd columns.

ii. Choose a pair of state and at the beginning of Step-

3.

iii. Invert Step-2 on and to obtain and

iv. Invert Step-1 and Step-0 on and to obtain

zero difference in Bundle-3 such that ⨁

v. Return this pair to satisfy the truncated trail with the probability of 2-16.24.

Before starting the truncated trail, firstly, a pair of inputs should be built in Step-2.

At the beginning of Step-2, pairs of bundles are not in a 3-Identical state. However,

pairs of Step-2 are built so that they should be in the 3-Identical state at the

beginning of Step-3. The input difference of Step-2) should be
after Super S-Box and the difference should be at the end of

Step-2. Also, the state of Step-3 should be 3-Identical. To do that, the difference is

set on only 22
nd

 and 23
rd

 columns. This is because the columns whose indices 22 and

23 do not affect the output columns whose indices 0,1,2,3. In other words, the

difference does not diffuse to the columns that round constant is added and the

differences of these columns will be zero after Super S-Box operation. The authors

stated that 2
16

 pairs could be generated in Step-3 to satisfy the difference condition of

Step-2.

Step-3 starts with the difference . Also, it is known that the first three

bundles are 3-Identical. In Section 3.2.2, three equations were shown to keep the 3-

Identical state if the input is 3-Identical. According to Table 3.2, the probability of

obtaining 3-Identical output in Step-3 is 2
-9

 if inputs of Step-3 are 3-Identical.

Step-4 starts with the difference . Also, Bundle-0, Bundle1 and Bundle-2

are in the 3-Identical state. The idea is to obtain the output difference at the

beginning of Step-5 and must be a nonzero value.

32

Let us denote two states of Step-4 after the L-Box operation, such as and

 . After L-Box operation, firstly round constant is added, then S-Box

operation is applied. After the S-Box operation, since two states are in the 3-Identical

state, Bundle-0, Bundle-1 and Bundle-2 will be the same except the columns that

round constants are added. At the end of Step-4, D-Box and second round constant

addition are applied. Obviously, the first three bundles only differ by the 0
th
, 1

st
, 2

nd

and 3
rd

 columns. The expression of 0
th
, 1

st
, 2

nd
 and 3

rd
 columns of and

 at the end of Step-4 is shown below. denotes the first round constant

and denotes the second round constant.

 For :

 For :

To obtain the difference after Step-4,
 for must be

satisfied.

Since these relations are obtained in Step-4, the round constant is . The

authors stated that the probability of satisfying all three relations is 2
-7.245

.

Step-5 starts with the difference . The input difference of Step-5 will

become after the Super S-Box. The difference value of Bundle-3 will

diffuse to other bundles and the output difference of Step-5 will be . This

is the 6-Step truncated differential distinguisher with the probability
 . Naturally, the six steps can be extended to seven steps by

adding an additional step with probability one. After the Super S-Box of Step-6, the

output difference will become with probability one. Therefore, the

probability of having zero Bundle-3 difference at the end of Step-6 is also , if

pairs of Step-2 are constructed the way that they are explained. In (Derbez et al.,

33

2020), they also verified these distinguishers experimentally. They stated that they

ran Algorithm-2 for 2
22

 pairs and acquired 124 pairs. The probability of having zero

output difference in Bundle-3 is approximately 2
-15

. Normally, to obtain such an

output difference for a random permutation, one needs 2
64

 queries according to

(Iwamoto et al., 2013). However, they can use 2
15

 pairs to obtain these differentials

for 7-Step Shadow-512.

3.4. Summary of Truncated Differential Distinguishers

In (Derbez et al., 2020), it was shown that there is a 5-Step truncated differential with

probability one. Also, they found a distinguisher on full permutation, which is six

steps of Shadow-512 with probability 2
-16.245

. Naturally, the 6-Step distinguisher can

be extended to seven steps with the same probability as if Shadow-512 is designed as

seven steps. They stated that these distinguishers are practical and they verified

experimentally by using their C++ implementations. In addition, (Derbez et al.,

2020) performed a forgery attack on 4-Step Shadow-512. They managed to generate

the same tag for two different messages by using the same nonce three times. They

used 2
30

 messages and found 41 collisions. However, they could not use their

truncated differential distinguishers that are explained in this chapter on the forgery

attack because the S1P mode of operation prevents them from specifying the

capacity bits which correspond to Bundle-2 and Bundle-3 bits. Therefore their

forgery attack starts from Step-2 and covers four steps.

It can be said that it was one of the most comprehensive works that were performed

on Spook. Especially, their 5-Step truncated differential distinguisher is one of the

main subjects of this thesis work. Since their 5-Step differential works with

probability one, we found impossible differential distinguishers by adding one or

more rounds top and the bottom of this truncated differential. After the results of

(Derbez et al., 2020), the authors of Spook proposed a second version of Spook,

Spook v2 (Bellizia et al., 2020). They suggested updating the D-Box layer and round

constants. However, Spook v2 was not considered as a round 2 candidate of NIST’s

competition because Spook v1 is the candidate of the round 2 of the competition.

Besides, Spook v1 was not obsoleted by their designers.

34

35

CHAPTER 4

IMPOSSIBLE AND IMPROBABLE DIFFERENTIAL DISTINGUISHERS OF

SHADOW-512

As mentioned in Chapter 2, Spook is an authenticated encryption algorithm that uses

the S1P mode of operation. The S1P mode of operation uses Shadow-512

permutation. In Chapter 2, the design specifications and components of Shadow-512

were explained in detail. In this chapter, firstly, bit S-Boxes of Shadow-512

will be investigated. Difference Distribution Table (DDT) and Undisturbed Bits of S-

Boxes will be introduced. Secondly, four different distinguishers that distinguish

Shadow-512 output from a random permutation will be shown. Shadow-512 was

designed as 6-Step. The designers of Spook also recommend that Shadow-512 can be

used as 4-Step. In Spook (Bellizia et al., 2019), they stated that the 4-Step design of

Shadow-512 is an interesting target for cryptanalysis. Starting from this, we found

two different 6-Step impossible differential distinguishers and they will be explained

in Section 4.3. Moreover, if Shadow-512 is considered as 7-Step or 8-Step, it is

possible to find a distinguisher that covers more steps than 6-Step. In Section 4.4, the

7-Step impossible differential distinguisher and in Section 4.5, 8-Step improbable

differential distinguisher will be introduced.

Table 4.1: Notation of Chapter 4

 ,

pair

36

4.1. DDT of S-Box and inverse S-Box.

 bit S-Box is a non-linear part of the Shadow-512 permutation. Since it is a

non-linear operation, the output difference can be found with some probability by

using the Difference Distribution Table. The Difference Distribution Table shows

that which input difference of S-Box leads to which output difference of S-Box for

how many times. In other words, the number of every possible input difference is

found and the number of their corresponding output differences are counted. Firstly

every possible input pairs are XORed with each other such that . Then,

their output pairs are XORed such that - - . The table is

constructed by counting the values as -th entry. DDT of Shadow-512’s S-Box is

shown in Table 4.2, and DDT of Shadow-512’s inverse S-Box is shown in Table 4.3.

Table 4.2: DDT of S-Box of Shadow-512

37

Table 4.3: DDT of inverse S-Box of Shadow-512

4.2. Undisturbed Bits of S-Box and inverse S-Box

Undisturbed Bits are a technique to find the exact output bit difference of S-Box with

probability one. Since S-Box is a non-linear operation and its output difference can

be found with some probability by using DDT, the undisturbed bits give the exact

output difference bits of S-Box with probability one. Undisturbed bits help us find

longer impossible differentials. It was used for the first time in (Tezcan, 2014). Also,

they are used in (Tezcan, 2016) and (Tezcan, 2020) to find the undisturbed bits of

the S-Box of ASCON (Dobraunig, Mendel, et al., 2019).

For example, when the input difference of S-Box is 8 (1000), the output difference of

S-Box can be 4 (0100), 5 (0101), 9 (1001) and C (1100). It is obvious that the first bit

of output difference remains invariant. The other bits can be ―1‖ or ―0‖; therefore,

they are denoted as ―?‖. To conclude, if the input difference of S-Box is (1000), the

output difference of S-Box will be (??0?) with probability one. The undisturbed bits

will be used in Section 4.3.2. Table 4.4 shows the Undisturbed Bits of Shadow-512’s

S-Box and inverse S-Box.

38

Table 4.4: Undisturbed Bits of S-Box and inverse S-Box

4.3. 6-Step Impossible Differential Distinguisher of Shadow-512

In this section, two different 6-Step impossible differential distinguishers of Shadow-

512 will be explained. We found 6-Step impossible differential distinguishers by

using the 5-Step truncated differential, which was introduced in (Derbez et al., 2020).

The detailed explanation about 5-Step truncated differential was given in Section 3.2.

Firstly, one more step is added to the top of 5-Step truncated differential in the

forward direction to obtain 6-Step impossible differential distinguisher. The

impossible differential distinguisher is obtained between Step-0 and Step-1.

Secondly, one step and an inverse D-Box operation are added to the bottom of the 5-

Step truncated differential in the backward direction to obtain another 6-Step

impossible differential distinguisher between Step-4 and Step-5.

39

4.3.1. Adding One More Step in the Forward Direction

In this section, one of our 6-Step impossible differential distinguisher will be

explained. The 6-Step impossible differential distinguisher has two parts. Firstly

usage of the 5-Step truncated differential of (Derbez et al., 2020) will be summarized

and then one step that is added to the top of the 5-Step truncated differential will be

shown. The 5-Step truncated differential starts from Step-3 and consists of two steps

in the forward direction and two steps in the backward direction. The one step

differential starts from Step-0 in the forward direction. The idea is to set the Bundle-

3 difference to a nonzero value at the end of Step-0. Thus, the difference of Bundle-3

of Step-0 does not match the Bundle-3 difference of Step-1. The impossible

differential will be obtained between the Step-0 output difference and Step-1 input

difference. Fig. 4.1 shows the 6-Step impossible differential distinguisher.

Figure 4.1: 6-Step Impossible Differential Distinguisher of Shadow-512 that starts

from Step-3

40

Algorithm-3 details the 6-Step impossible differential distinguisher. Let denote the

Super S-Box operation and j denotes the bundle index.

Impossible: The difference of Step-1, which is does not match the difference of Step-1,

which is in the middle.

i. Choose a random pair such that
 and (

 in Step-3. must be

set to zero on the 0th, 1st,2nd,3rd columns of a bundle.

ii. Choose a random state

iii. Compute
 and

 for . Set the states at Step-3

such that

iv. Iterate Step-4 and Step-5 on and
 to obtain in Step-5

v. The difference of Step-5 cannot come from the input difference (

in Step-0 if the difference of Step-3 is (.

According to Algorithm-3, the truncated trail starts from Step-3 with the

difference). The first three bundles are in a 3-Identical state and their

differences are the same. After two steps in the forward direction, the difference will

become with probability one. The difference value of the first three

bundles can be any value, but the difference of Bundle-3 will be definitely zero in

Step-5. In a similar way, two steps in the backward direction are applied to bundles

and the difference) will become . The difference value of

Bundle-0, Bundle-1 and Bundle-2 can be any value other than zero; however, the

difference of Bundle-3 will be absolutely zero at the beginning of Step-1. This is 5-

Step truncated differential of (Derbez et al., 2020) and the detailed explanation was

given in Section 3.2.

In Table 4.5, the one step truncated differential that starts from Step-0 is shown. The

purpose is to prove the nonzero Bundle-3 difference after one step in the forward

direction.

41

Table 4.5: 1-Step in the forward direction to obtain 6-Step impossible differential

distinguisher

 Bundle-0 Bundle-1 Bundle-2 Bundle-3

Initialization

S-Box

L-Box

RC

S-Box

D-Box

To obtain nonzero Bundle-3 difference at the end of Step-0, there are some

constraints about defining Step-0 pairs in the Initialization part:

 The value of difference can be any value. The only condition is that

Bundle-0 and Bundle-1 pairs should be chosen the same. and

 should be satisfied.

 The value of the difference must be different from approximately 2
76

different difference values that will be explained later.

 The value of the difference can be any value. Input pairs that are chosen

for Bundle-3 can be random.

S-Box and L-Box Layer:

In the first S-Box layer, since Bundle-0 and Bundle-1 pairs are the same, the output

of the S-Box layer and their differences will become the same value. Moreover, it is

obvious that after the L-Box layer, Bundle-0 and Bundle-1 pairs and their differences

are still the same since inputs of the L-Box layer are the same.

The input pairs are identical for Bundle-0 and Bundle-1.

42

 For Bundle-0:

 ()
 ()

 (

)

 (
)

 (
)

 (

)

 For Bundle-1:

 ()
 ()

 (

)

 (
)

 (
)

 (

)

Output pairs will be identical for Bundle-0 and Bundle-1.

 .

 For Bundle-2:

 ()
 ()

 (

)

 (
)

 (
)

 (

)

 For Bundle-3:

 ()
 ()

 (

)

 (
)

 (
)

 (

)

Round Constant Addition:

The only part that changes the value of Bundle-0 and Bundle-1 pairs is the round

constant addition part. As explained in Section 2.4.3, round constant operation is

applied to the different columns for Bundle-0 and Bundle-1. The round constant is

added to 0
th
 column for Bundle-0 and 1

st
 column of Bundle-1. After round constant

43

addition part, Bundle-0 and Bundle-1 pairs are slightly different from each other;

however, their differences are still the same since round constant addition is just an

XOR operation. Although it affects the values of pairs, the differences are not

affected by round constant.

 For Bundle-0:

 (
)

 (
)

 (

)

 For Bundle-1:

 (
)

 (
)

 (

)

The output pairs are slightly different from each other.

 .

In Table 4.6, the bits that are represented by grey are different for Bundle-0 and

Bundle-1 input pairs. All the remaining bits are the same for Bundle-0 and Bundle-1

pairs.

Table 4.6: The bits that are different for Bundle-0 and Bundle-1

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

 For Bundle-2:

 (
)

 (
)

 (

)

 For Bundle-3:

 (
)

 (
)

 (

)

44

Second S-Box Layer:

The operation continues with the second S-Box layer. After the second S-Box layer,

Bundle-0 and Bundle-1 pairs and their differences are still the same except for the 0
th

and 1
st
 columns since the same input differences may lead to different output

differences if two input columns of S-Box are different from each other. In this case,

only two columns of Bundle-0 and Bundle-1 may be different and the other columns

are definitely the same. Since there is a slight possibility that 0
th
 and 1

st
 columns are

different for Bundle-0 and Bundle-1 pairs, it is assumed that they are different.

 For Bundle-0:

 (
)

 (
)

 (

)

 For Bundle-1:

 (
)

 (
)

 (

)

The output pairs of Bundle-0 and Bundle-1 are almost the same except for the least

significant two columns.

 . Therefore, .

 For Bundle-2:

 (
)

 (
)

 (

)

 For Bundle-3:

 (
)

 (
)

 (

)

D-Box Layer:

In the D-Box layer, as mentioned earlier in Section 2.4.4, three of four bundles are

XORed with each other to construct other bundle.

 For Bundle-0:

 (

)

 (

)

45

 (

) (

)

 For Bundle-1:

 (

)

 (

)

 (

) (

)

It is known that Bundle-0 and Bundle-1 pairs are almost the same before the D-Box

operation. Therefore, the difference value of Bundle-2 will come from Bundle-3 and

the difference value of Bundle-3 will come from Bundle-2 after the D-Box layer.

 For Bundle-2:

 (

)

 (

)

Recall that

 and

 ; therefore,

 and

 .

 (

) (

)

It can be said that .

 For Bundle-3:

 (

)

 (

)

Recall that

 ; therefore,

 and

 .

 (

) (

)

It can be said that .

After the D-Box layer, the difference value of Bundle-3 comes from

except for the 0
th
 and 1

st
 column. The idea is that if

 is not equal to

zero, Bundle-3 cannot have zero difference after the D-Box layer of Step-0. This

brings up the question. Which input difference should not be given to the Bundle-2 at

the beginning of Step-0 so that the difference value of Bundle-2 (

) after

the second S-Box layer is not equal to zero? Thus, it will be proven that the value of

 cannot be zero.

46

In Table 4.7, the difference value of Bundle-2 that should not be obtained after the

second S-Box layer is shown. The difference value of the least significant two

columns of Bundle-2 can be any value. Since Bundle-0, Bundle-1 and Bundle-2 are

XORed with each other to build Bundle-3 in the D-Box layer, the difference value of

the least significant two columns of Bundle-3 can be zero. Therefore, if it is

guaranteed that the difference of other columns of Bundle-2 cannot be zero, the

difference of Bundle-3 will be nonzero after the D-Box.

Table 4.7: The difference of Bundle-2 that should not be obtained after the second S-

Box layer

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

0

0

0

0

Now, we should think in the opposite way. If Table 4.7 represents the output

difference of Bundle-2 after the second S-Box layer, the output difference of L-Box

must also be identical to Table 4.7. Because the only way that makes the output

difference zero after the S-Box operation is setting the input difference to zero.

Therefore, in Table 5.8, it is shown that there are 36 possible Bundle-2 difference

values that give the zero output difference except for the 0
th
 and 1

st
 column after the

L-Box layer. Each cell represents a difference value of a Bundle-2 that should not be

given as input difference of L-Box.

 Let (

) and then - (

) (

)

Therefore, - (

) (

)

47

Table 4.8: Possible input differences of L-Box that makes the output difference zero

0x6a1b93b3
0x600ed073

0x6a1b93b3

0x600ed073

0x6a1b93b3
0x600ed073

0xbf188a19

0x65047193

0x6a1b93b3
0x600ed073

0x600ed073

0xb50dc9d9

0x6a1b93b3
0x600ed073

0xb50dc9d9

0xb0076839

0x6a1b93b3
0x600ed073

0x060cc140

0xb3010899

0x6a1b93b3
0x600ed073

0xb3010899

0x030660a0

0xbf188a19
0x65047193

0xbf188a19

0x65047193

0xbf188a19
0x65047193

0x600ed073

0xb50dc9d9

0xbf188a19
0x65047193

0xb50dc9d9

0xb0076839

0xbf188a19
0x65047193

0x060cc140

0xb3010899

0xbf188a19
0x65047193

0xb3010899

0x030660a0

0xbf188a19
0x65047193

0x6a1b93b3

0x600ed073

0x600ed073
0xb50dc9d9

0x600ed073

0xb50dc9d9

0x600ed073
0xb50dc9d9

0xb50dc9d9

0xb0076839

0x600ed073
0xb50dc9d9

0x060cc140

0xb3010899

0x600ed073
0xb50dc9d9

0xb3010899

0x030660a0

0x600ed073
0xb50dc9d9

0x6a1b93b3

0x600ed073

0x600ed073
0xb50dc9d9

0xbf188a19

0x65047193

0xb50dc9d9

0xb0076839

0xb50dc9d9

0xb0076839

0xb50dc9d9

0xb0076839

0x060cc140

0xb3010899

0xb50dc9d9

0xb0076839

0xb3010899

0x030660a0

0xb50dc9d9

0xb0076839

0x6a1b93b3

0x600ed073

0xb50dc9d9

0xb0076839

0xbf188a19

0x65047193

0xb50dc9d9

0xb0076839

0x600ed073

0xb50dc9d9

0x60cc140

0xb3010899

0x060cc140
0xb3010899

0x060cc140

0xb3010899

0xb3010899
0x030660a0

0x060cc140

0xb3010899

0x6a1b93b3
0x600ed073

0x060cc140

0xb3010899

0xbf188a19
0x65047193

0x060cc140

0xb3010899

0x600ed073
0xb50dc9d9

0x060cc140

0xb3010899

0xb50dc9d9
0xb0076839

0xb3010899

0x030660a0

0xb3010899
0x030660a0

0xb3010899

0x030660a0

0x6a1b93b3
0x600ed073

0xb3010899

0x030660a0

0xbf188a19
0x65047193

0xb3010899

0x030660a0

0x600ed073
0xb50dc9d9

0xb3010899

0x030660a0

0xb50dc9d9
0xb0076839

0xb3010899

0x030660a0

0x060cc140
0xb3010899

The difference values that are shown in Table 4.8 also can be considered as the

output difference of the first S-Box layer. According to DDT, all possible input

difference values of the first S-Box can be found practically.

For example, Bundle-2 output difference after the first S-Box layer is (

).

Binary representation of this difference is: (

).

Recall that S-Box operation is applied column by column and this difference value is

the output difference of the first S-Box layer. With the help of DDT, all possible

input differences of S-Boxes can be found.

48

If we multiply the numbers of all possible input differences for each column, it is

seen that there are 2
54.0947

 possible input differences of S-Box for (

).

Recall that, there are 36 different output differences that should not be obtained after

the first S-Box operation. Therefore, when this calculation is made for all 36

different output difference structures, it will be seen that there are approximately 2
76

input difference values that cannot be given as input difference of the first S-Box. To

conclude, at the beginning of Step-0, there are approximately (2
128

 – 2
76

) possible

input differences that can be given to Bundle-2.

By this point, it was proven that Bundle-0 and Bundle-1 almost have identical

difference values and identical pairs except 0
th
 and 1

st
 column after the second S-Box

layer. Moreover, it is guaranteed that the difference value of Bundle-2 cannot be zero

after the second S-Box layer. Finally, in the D-Box layer, since Bundle-0, Bundle-1

and Bundle-2 are XORed with each other to construct Bundle-3, the difference of

Bundle-3 cannot be zero with probability one. The difference cannot

match the difference between Step-0 and Step-1. Therefore, it can be said

that the output difference of Step-5, which is cannot come from the input

difference of Step-0, which is with probability one if the output

difference of Super S-Box of Step-3 is (.

To sum up, 6-Step impossible differential distinguisher was obtained. Since at the

beginning of Step-0, the input difference is defined as , there are
 possible input difference structures that can be generated. It can be said

that the number of possible inputs is approximately . Therefore, this impossible

differential holds with the probability of 2
-128

 for a random permutation and due to

the birthday paradox, the impossible differential distinguisher needs 2
64

 different

pairs to distinguish Shadow-512 from a random permutation with probability one.

According to (Derbez et al., 2020), the probability of their 6-Step truncated

differential distinguisher is . Compared to their result, our distinguisher

works with probability one. Although our distinguisher has a better probability, a

distinguishing attack on a random permutation would require around 2
64

 pairs due to

the filtering conditions on the input pairs.

49

4.3.2. Adding One More Step in the Backward Direction

In this section, another 6-Step impossible differential distinguisher will be explained.

The 6-Step impossible differential distinguisher consists of two parts. Firstly, 5-Step

truncated differential, which was explained in Section 3.2 will be summarized.

Secondly, the one step in the backward direction that is added to the bottom of the 5-

Step truncated differential will be explained. The 5-Step truncated differential starts

from Step-2 and the difference propagates with probability one along with two steps

in the forward direction and two steps in the backward direction. The one step starts

from Step-5 and finishes up with inverse D-Box operation of Step-4 with probability

one. The idea is to set the Bundle-3 difference to a nonzero value after one step and

inverse D-Box operation with probability one so that it does not match the difference

of Bundle-3, which is zero in Step-4.

Figure 4.2: 6-Step Impossible Differential Distinguisher of Shadow-512 that starts

from Step-2

50

Algorithm-4 details the 6-Step impossible differential distinguisher. Let denote the

Super S-Box operation and j denotes the bundle index.

Impossible: The difference of Step-4, which is does not match the difference
in the middle.

i. Choose a random pair such that
 and (

 in Step-3. must be

set to zero on the 0th, 1st,2nd,3rd columns of a bundle.

ii. Choose a random
 .

iii. Compute
 and

 for . Set the states at Step-2

such that

iv. Invert Step-1 and Step-0 to obtain at the beginning of Step-0.

v. The difference of Step-5 cannot come from the input difference

in Step-0 if the difference of Step-2 is (.

According to Algorithm-4, the truncated trail starts from Step-2 with the

difference). The first three bundles are in a 3-Identical state. After two

steps in the backward direction, the difference will become with

probability one. Similarly, two steps in the forward direction are applied to the

bundles in Step-2 and the difference will become after Super

S-Box operation of Step-4 with probability one. This is the 5-Step truncated

differential of (Derbez et al., 2020) and the detailed explanation of this was given in

Section 3.2. As can be seen in Fig. 4.2, the difference of Bundle-3 is zero after the

Super S-Box of Step-4.

In Table 4.9, the one step that starts from Step-0 is shown. The purpose is adding one

step and an inverse D-Box to obtain the nonzero Bundle-3 difference at the end of

the inverse D-Box of Step-4.

51

Table 4.9: 1-Step in the backward direction to obtain 6-Step impossible differential

distinguisher

 Bundle-0 Bundle-1 Bundle-2 Bundle-3

Initialization

Inverse

D-Box

Inverse

S-Box

RC

Inverse

L-Box

Inverse

S-Box

Inverse

D-Box

Note that before the D-Box layer of Step-5, there is a round constant addition part.

Since round constant addition does not affect the difference value and also it is

known which round constant value is added to bundles, this round constant addition

part is skipped. Therefore, the pairs should be defined after round constant addition

part of Step-5.

To obtain nonzero Bundle-3 difference at the end of Super S-Box of Step-4, there are

some constraints about defining Step-5 pairs in the Initialization part:

 The value of difference can be any value. The only condition is that

Bundle-0 and Bundle-1 pairs are chosen the same. and

should be satisfied.

 The value of the difference can be any value.

 The value of the difference has an exact value. One bit difference should

be given to the pairs. The difference value can be seen in Table 4.10.

52

In this iteration, each row of a bundle is represented with binary notation. The bits

that are shown as can be 1 or 0.

Table 4.10: Initial values of bundles at the end of Step-5

 Initialization

Bundle-0

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

Bundle-1

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

Bundle-2

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

Bundle-3

00001000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

Value is

Firstly, the difference value is given to the pairs according to constraints. Then, the

distribution of the difference value will be observed in each layer.

Inverse D-Box Layer:

In the inverse D-Box layer of Step-5, three of four bundles are XORed with each

other to construct the other bundle. Since Bundle-0 and Bundle-1 pairs are the same,

after the inverse D-Box layer, Bundle-2 will have the difference of Bundle-3 and

Bundle-3 will have the difference of Bundle-2. The pairs of Bundle-0 and Bundle-1

are still identical.

For Bundle-0:
 and

For Bundle-1:
 and

53

For Bundle-2:
 and

For Bundle-3:
 and

After the inverse S-Box layer, the difference of Bundle-0, Bundle-1 and Bundle-3 are

still unknown. However, the output differences of the inverse S-Box layer are still

the same for Bundle-0 and Bundle-1 because the same inputs produce the same

outputs in the inverse S-Box layer.

 and

 is satisfied after the

inverse S-Box layer. The difference value of Bundle-2 can be found by using

Undisturbed Bits technique that is explained in Section 4.2. According to Table 4.4,

the difference value of 27
th

column of Bundle-2 (1000) leads to (0??1) difference.

Table 4.11 shows the difference values after the inverse D-Box and inverse S-Box

operation

Table 4.11: Inverse D-Box and Inverse S-Box of Step-5

 STEP-5

 Inverse D-Box Inverse S-Box

Bundle-

0

????????????????????????????????
????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

????????????????????????????????
????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

Bundle-
1

????????????????????????????????

????????????????????????????????

????????????????????????????????
????????????????????????????????

Value is

????????????????????????????????

????????????????????????????????

????????????????????????????????
????????????????????????????????

Value is

Bundle-
2

00001000000000000000000000000000
00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

Value is

00000000000000000000000000000000
0000?000000000000000000000000000

0000?000000000000000000000000000

00001000000000000000000000000000

Value is

Bundle-
3

????????????????????????????????

????????????????????????????????

????????????????????????????????
????????????????????????????????

Value is

????????????????????????????????

????????????????????????????????

????????????????????????????????
????????????????????????????????

Value is

54

Round constant addition and L-Box Layer:

The round constant is added to bundles after the inverse S-Box layer. Recall that the

round constant addition part does not change the difference value; however, for a

bundle index j, the 4-bit round constant is XORed with the column index j. It means

round constant is added to 3
rd

column of Bundle-3, 2
nd

 column of Bundle-2, 1
st

column of Bundle-1 and 0
th
 column of Bundle-0. Since round constant is added to

different positions for each bundle, it is distributed to different positions for different

bundles in the linear layer, which is inverse L-Box.

As can be seen in the Tables between 4.12 and 4.19, round constant bits are

distributed to other bits in the inverse L-Box layer. Most of the bits are affected and

they are marked as grey.

Table 4.12: Round constant addition for Bundle-0

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

Table 4.13: The impact of round constant addition after inverse L-Box operation for

Bundle-0

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

55

Table 4.14: Round constant addition for Bundle-1

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

Table 4.15: The impact of round constant addition after inverse L-Box operation for

Bundle-1

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

Table 4.16: Round constant addition for Bundle-2

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

56

Table 4.17: The impact of round constant addition after inverse L-Box operation for

Bundle-2

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

Table 4.18: Round constant addition for Bundle-3

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

Table 4.19: The impact of round constant addition after inverse L-Box operation for

Bundle-3

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

9 8 7 6 5 4 3 2 1 0

The impact of the distribution of round constant bits in the inverse L-Box layer

shows that Bundle-0 and Bundle-1 pairs are not completely identical anymore after

the inverse L-Box layer. However, round constant bits do not affect all 128 bits of a

bundle. Some of the bits will not change and they are still identical for Bundle-0 and

57

Bundle-1 pairs. Note that 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of the Bundle-0 and

Bundle-1 pairs are not affected by round constant bits in the inverse L-Box part. In

Table 4.20, the bold ―?‖ bits of Bundle-0 and Bundle-1 differences are still unknown;

however, it is proven that 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of their pairs are

identical. Also, the difference value of Bundle-0 and Bundle-1 is still the same and

unknown. The similarity of bundle’s pairs will be useful in the inverse D-Box part of

Step-4 because it’s expected that 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of Bundle-0 and

Bundle-1 pairs will still be the same after the inverse S-Box operation. Then, they

will cancel out each other in the inverse D-Box part.

Table 4.20: Round constant addition and inverse L-Box of Step-5

 STEP-5

 RC Inverse L-Box

Bundle-

0

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

Bundle-

1

????????????????????????????????

????????????????????????????????
????????????????????????????????

????????????????????????????????

Value is

????????????????????????????????

????????????????????????????????
????????????????????????????????

????????????????????????????????

Value is

Bundle-
2

00000000000000000000000000000000
0000?000000000000000000000000000

0000?000000000000000000000000000

00001000000000000000000000000000

Value is

0000000000??00000??00??00000???0
??00??0??00??00000???0000?000?00

??00??0??01??00001???1100?001?10

11001101100??00000??10??01000???

Value is

Bundle-

3

????????????????????????????????

????????????????????????????????

????????????????????????????????
????????????????????????????????

Value is

????????????????????????????????

????????????????????????????????

????????????????????????????????
????????????????????????????????

Value is

According to Table 4.20, the difference value of Bundle-2 is distributed to other bits

in the inverse L-Box layer. Some columns are still zero and some columns do not

have any bits whose value is 1. It means these columns may be zero. On the other

hand, columns with at least one ―1‖ bit cannot have zero difference. This approach

will be useful in the inverse S-Box layer.

Inverse S-Box and Inverse D-Box Layer:

After the inverse S-Box layer, the difference values of Bundle-0, Bundle-1 and

Bundle-3 are still unknown. However, since 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of

58

Bundle-0 and Bundle-1 pairs are identical, their difference values will still be

identical after the inverse S-Box layer. The difference value of other columns may be

different because inputs of the S-Boxes are different.

Table 4.21: Inverse S-Box of Step-5 and inverse D-Box of Step-4

 STEP-5 STEP-4

 Inverse S-Box Inverse D-Box

Bundle-0

????????????????????????????????

????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

????????????????????????????????

????????????????????????????????
????????????????????????????????

????????????????????????????????

Value is Y

Bundle-1

????????????????????????????????

????????????????????????????????
????????????????????????????????

????????????????????????????????

Value is

????????????????????????????????
????????????????????????????????

????????????????????????????????

????????????????????????????????
Value is Z

Bundle-2

xx00xx0xx0x??0000x??xxx?0x00x?x?

xx00xx0xx0x??0000x??xxx?0x00x?x?

xx00xx0xx0x??0000x??xxx?0x00x?x?
xx00xx0xx0x??0000x??xxx?0x00x?x?

Value is S

????????????????????????????????
????????????????????????????????

????????????????????????????????

????????????????????????????????

Value is

Bundle-3

????????????????????????????????

????????????????????????????????
????????????????????????????????

????????????????????????????????

Value is T

??????x?x??????????x????????????

??????x?x??????????x????????????

??????x?x??????????x????????????
??????x?x??????????x????????????

Value is (Nonzero)

For Bundle-2, some bits are represented ―x‖ because the input difference of inverse

S-Box contains at least one ―1‖ bit. It is obvious that the output difference of inverse

S-Box will contain at least one ―1‖ bit. It means one of the ―x‖ values must be ―1‖

for each column that includes ―x.‖

If , at least one of is 1.

As mentioned in Section 2.4.4, in the D-Box layer, three of four bundles are XORed

with each other to construct the other bundle. To construct Bundle-3; Bundle-0,

Bundle-1 and Bundle-2 are XORed with each other. It is known that 2
nd

, 10
th

, 21
st
,

22
nd

, 23
rd

 columns of Bundle-0 and Bundle-1 pairs are exactly the same. When

Bundle-0 and Bundle-1 are XORed with each other, 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd

columns will be zero. Therefore, the difference of Bundle-3 will come from Bundle-

2 on these columns after the inverse D-Box layer. As can be seen in Table 4.21, 23
rd

,

22
nd

, 10
th

 columns of Bundle-2 contain at least one ―1‖ bit. It means the difference of

59

Bundle-3, which is ‖ cannot be zero after the inverse D-Box layer with probability

one.

By this point, firstly, the 5-Step truncated differential that starts from Step-2 was

explained and then the output difference of Super S-Box of Step-4, which is
 was obtained with probability one. Then, one step and an inverse D-Box

operation in the backward direction were added to the bottom of this differential and

the output difference of inverse D-Box of Step-4, which is was obtained

with probability one. The idea is to find a nonzero difference value of Bundle-3,

which is represented as ‖ so that output difference of Super S-Box and output

difference of inverse D-Box cannot match in the middle of Step-4. As it is explained

in detail, in the Step-4, the difference of Bundle-3, which is ‖ cannot be zero if the

output difference of Step-5 is . It can be said that the output difference of

Step-5, which is cannot come from the input difference of Step-0 which

is if the output difference of Step-2 Super S-Box operation is (.

Thus, 6-Step impossible differential distinguisher is obtained.

To sum up, we have defined the output difference of Step-5 as . Since the

difference value of and can be any value and 128-bit of is fixed, there are

2
256

possible output differences that can be generated. Therefore, this impossible

differential holds with the probability for a random permutation. Due to the

birthday paradox, the impossible differential distinguisher needs different pairs

to distinguish Shadow-512 from a random permutation. According to (Derbez et al.,

2020), the probability of their 6-Step truncated differential distinguisher is .

Compared to their result, our distinguisher works with probability one. Although our

distinguisher has a better probability, a distinguishing attack on a random

permutation would require around 2
128

 pairs due to the filtering conditions on the

input pairs.

60

4.4. 7- Step Impossible Differential Distinguisher of Shadow-512

Figure 4.3: 7-Step Impossible Differential Distinguisher of Shadow-512

61

Normally, Shadow-512 is designed as a 6-Step permutation. However, it can be

thought of as a 7-step design as if it is a round-extended version. In this section, 7-

step impossible differential distinguisher will be explained. The 7-step impossible

differential distinguisher is found by adding two more steps in the forward direction

on the top of 5-Step truncated differential that was explained in Section 3.2. The 5-

step truncated differential starts from Step-4 and consists of two steps in the forward

direction and two steps in the backward direction. After that, another two steps are

added to the top of the 5-Step truncated differential and it starts from Step-0. If the

difference value at the end of Step-1 and the difference value at the beginning of

Step-2 do not match, the 7-Step impossible differential distinguisher will be

obtained. The 7-Step impossible differential distinguisher is shown in Fig. 4.3.

Let denote the Super S-Box operation and denotes the bundle index.

Impossible: The difference of Step-2 which is does not match the difference of Step-1
 in the middle.

i. Choose a random pair such that
 and (

 in Step-4. must be

zero on 0th, 1st, 2nd, 3rd columns of a bundle.

ii. Choose a random state
 .

iii. Compute
 and

 for . Set the states at Step-

4 such that

iv. Iterate Step-5 and Step-6 on and
 to obtain in Step-6.

v. The difference of Step-6 cannot come from the input difference (
in Step-0 if the difference of Step-3 is (.

According to Algorithm-5, in the beginning, 5-Step truncated differential starts from

Step-4 with the difference value). The pairs of Bundle-0, Bundle-1 and

Bundle-2 are in a 3-Identical state. The 3-Identical state cannot be preserved after the

first round constant addition since round constant is added to different columns of

different bundles. However, after one step, three identical differences can be

obtained by choosing the right difference value of . As mentioned in Section 3.2, to

obtain transition after the Super S-Box, the difference must be set to zero

for columns that round constant is added. In other words, the difference value of 0
th
,

1
st
,2

nd
,3

rd
 columns of a bundle must be set to zero for . Therefore after the Super S-

Box, the difference will become and three identical differences are

obtained. After D-Box, the difference will become since three of four

bundles are XORed with each other in the D-Box layer. The difference
will become after Super S-Box of Step-5 because zero input difference

leads to zero output difference in the Super S-Box layer. In the D-Box layer of Step-

5, the difference will become since difference of Bundle-3

is distributed to other bundles. In the Super S-Box layer of Step-6, input differences

62

of Bundle-0, Bundle-1 and Bundle-2, which are will lead to different values for

different bundles. Although Bundle-0, Bundle-1 and Bundle-2 have the same

difference value before the Super S-Box layer, their pairs are not the same. The same

input differences can lead to different output differences in the Super S-Box layer.

Therefore the difference will become with probability one

after the Super S-Box layer of Step-6. The difference values of the first three bundles

can be any value, but the difference of Bundle-3 is certainly zero. Now, we are going

back to Step-4, where iteration starts. Two steps of the inverse operation are applied

to) the difference in Step-4. After the inverse D-Box layer of Step-3, the

difference will become . In inverse Super S-Box of Step-3, the difference

 will become and the difference will become

 after inverse D-Box layer. Although the differences of Bundle-0, Bundle-

1 and Bundle-2 are the same, their pairs may not be identical. Since the same input

difference can lead to different output difference in the inverse Super S-Box layer,

the difference will become after inverse Super S-Box of Step-

2. The difference value of Bundle-0, Bundle-1 and Bundle-2 can be any value, but

the difference of Bundle-3 is definitely zero after two steps in the backward direction

if the input difference is) in Step-4.

As mentioned above, the difference value at the beginning of Step-2 is and

it is proven that the difference value of Bundle-3 is zero. The idea is adding two

more steps to the top of the difference value in Step-2. After two steps that

are added to the top, if it is proven that the difference value of Bundle-3 of Step-1

cannot be zero, it cannot match the difference value at the beginning of Step-2. Thus,

7-step impossible differential distinguisher will be obtained.

To find impossible differential distinguisher, the difference value is given

to bundles in Step-0. The pairs are built in the same way as in Step-4 but now zero

difference is given to Bundle-0 instead of Bundle-3. It means Bundle-1, Bundle-2

and Bundle-3 should be in the 3-Identical state. The 3-Identical state cannot be

preserved after the round constant addition part in the Super S-Box layer. However,

if the output difference of Super S-Box, which is is set to zero on the columns

that round constants are added, the level transition is valid for Bundle-1,

Bundle-2 and Bundle-3. Thus the round constant addition that depends on bundle

index cannot affect the output differences of Super S-Box. The input difference
 will become after Super S-Box of Step-0. After that, the input

difference value of the D-Box will become since three of four

bundles are XORed with each other to construct the other bundle. In Step-1, the input

difference will become after Super S-Box. Bundle-0 difference

 will distribute to the other three bundles and the difference value will become

 in the D-Box layer of Step-1. It is certain that the difference value of

Bundle-3 is nonzero.

Therefore, the nonzero difference of Bundle-3, which is cannot match the zero

difference of Bundle-3 at the beginning of Step-2. It can be said that the output

difference of Step-6 cannot come from the input difference of Step-0
 with probability one after 7-Step iteration if the difference of Step-4

is .

63

Since the idea is to make the output difference value of Bundle-3 nonzero after Step-

1, there are three input difference structures that can be given to the bundles at the

beginning of Step-0. In Table 4.22, all possible input difference structures that lead

to nonzero Bundle-3 difference after Step-1 are shown.

Table 4.22: The possible input difference structures of 7-Step impossible differential

distinguisher

INITIALIZATION

STEP-0

STEP-1

7-Step impossible differential characteristics:

 or

 or

In Step-0, we use two 3-Identical input messages and
 such that . The probability of constructing

 is because 256 bits are fixed. The probability of constructing is
 because the Bundle-3 of should be the same as the Bundle-3 of .

Therefore, we can say that the output difference of Step-6 cannot come

from the input difference of Step-0 with probability for a random

permutation. Due to the birthday paradox, one needs at least different input

pairs to observe output difference at the end of Step-6.

On the other hand, we can also build this 7-Step impossible differential by not using

the 3-Identical property. We need to obtain difference right after the

Super S-Box of Step-0. If we start from the D-Box operation of Step-0 with the input

difference , we can say that the output difference value of Step-6

 cannot come from the input difference of Step-0 which is .

This 7-Step impossible differential distinguisher holds with the probability
 for a random permutation since the 128 bits of input differences are fixed.

Therefore the data complexity of the 7-Step impossible differential distinguisher is

 pairs because of the birthday paradox.

To sum up, if Shadow-512 permutation were designed as 7-Step, there exists an

impossible differential that distinguishes 7-Step Shadow-512 from random

permutation. According to (Derbez et al., 2020), the probability of their 6-Step

truncated differential distinguisher is . Compared to their result, our

distinguisher works with probability one. Although our distinguisher has a better

probability, a distinguishing attack on a random permutation would require around

2
192

 pairs.

64

4.5. 8-Step Improbable Differential Distinguisher of Shadow-512

Figure 4.4: 8-Step Improbable Differential Distinguisher of Shadow-512

65

In Section 4.3, two different 6-Step impossible differential distinguishers of Shadow-

512 were explained. As mentioned in Section 2.3, Shadow-512 was designed as 6-

Step; however, it is possible to find a distinguisher that covers more than six steps. In

Section 4.4, we have introduced a 7-Step impossible differential as if Shadow-512

has been designed as seven steps. Similarly, it can be considered that Shadow-512

consists of eight steps. In this section, 8-Step improbable differential distinguisher

will be explained. The 8-Step improbable differential has two parts. Firstly, three

steps that start from Step-5 will be described. Then, five steps that start from Step-0

will be explained. The improbable differential distinguisher will be obtained between

Step-4 and Step-5.

Let denote the Super SBOX operation and denotes the bundle index.

Improbable: The difference of Step-5 cannot come from the input difference (
in Step-0 with the probability 1- if the difference of Step-5 is (.

i. In Step-5, choose a pair such that
 and

 .

must be zero on the 0th, 1st, 2nd, 3rd columns of a bundle.

ii. Choose a random state
 .

iii. Compute
 and

 for . Set the states at Step-5

such that

iv. Iterate Step-6 and Step-7 to obtain output difference.

v. If the input difference is (in Step-0, the output difference can be
in Step-7 with the very low probability .

According to Algorithm-6, the improbable differential starts from the D-Box

operation of Step-5 with the difference value . The difference must be

set to zero on the 0
th
,1

th
,2

nd
,3

rd
 columns that round constant is added. To obtain 3-

Identical State at the input of Super S-Box of Step-5, must be set to zero on these

bits after the Super S-Box operation. In the D-Box layer of Step-5, three of four

bundles are XORed with each other and the difference value will become .
In Step-6, input difference will become after Super S-Box layer.

The difference will be distributed to other bundles in the D-Box layer of Step-6.

Step-7 starts with the difference value and the difference will

become after Super S-Box of Step-7 with probability one.

The second part starts from Step-0 with the difference value . Bundle-0,

Bundle-1 and Bundle-2 pairs must be 3-Identical. The 3-Identical state cannot be

preserved after the first round constant addition part. Therefore, to obtain three

identical output differences of Super S-Box, the output difference of Super S-Box,

which is must be set to zero on columns that round constants are added. The

66

detailed explanation about building pairs that gives transition was explained

in Section 3.2. Thus, the input difference of Step-0, which is will

become after the Super S-Box of Step-0. After the D-Box of Step-0, since

the differences of Bundle-0, Bundle-1 and Bundle-2 are the same, their differences

cancel out each other and the output difference of the D-Box will become .
In Step-1, the difference will become after the Super S-Box layer

and the difference will become after the D-Box because the

difference of Bundle-3, which is will be distributed to other bundles. After the

Super S-Box of Step-2, the difference will become . It means the

differences of Bundle-0, Bundle-1 and Bundle-2 can be any value. Since round

constant is added to different columns for different bundles, the output difference of

S-Box can be different for the same input. In other words, although the round

constant addition part does not affect the difference value, it affects the values of

input pairs. Therefore, even if output differences of Bundle-0, Bundle-1 and Bundle-

2 are the same after the RC part, their input pairs are different from each other. After

all, the second S-Box layer that is done right after the round constant addition part

may give different output differences for the same input differences according to

DDT. Up to now, it is guaranteed that if the input difference is in the

beginning of Step-0, the output difference of the Super S-Box of Step-2 will be
 with probability .

In the D-Box layer of Step-2, Bundle-0, Bundle-1 and Bundle-2 are XORed with

each other to construct the difference of Bundle-3. As explained above, the

difference values of Bundle-0, Bundle-1 and Bundle-2 are , and ,

respectively. Since the exact values of , and are not known, they might be

anything except for zero. Therefore, if they are XORed with each other in the D-Box,

the result can be zero with the probability .

After the D-Box layer of Step-2:

Since 128 bits are fixed to zero at the difference of Bundle-3, the probability of

having zero difference of Bundle-3 is . .

At the beginning of Step-3, the differences are . It is obvious that zero

input difference leads to zero output difference after the Super S-Box of Step-3 for

Bundle-3. The purpose is to obtain the same output differences for Bundle-0,

Bundle-1 and Bundle-2.

67

After the Super S-Box layer of Step-3:

The probability of having identical differences of Bundle-0, Bundle-1 and Bundle-2

is because the difference of Bundle-3 will be definitely zero and there are

different values of whole structures. .

After the D-Box of Step-3, the difference will become since

three of four bundles will be XORed with each other. In Step-4, after the Super S-

Box layer, the difference will become) with probability one. .

After the D-Box Layer of Step-4

After the D-Box layer of Step-4, the difference will be

definitely). Although the differences of Bundle-0, Bundle-1 and Bundle-2

are the same value, their input pairs may be different from each other. The idea is

obtaining 3-Identical State at the beginning of Step-5. In other words, pairs of

Bundle-0, Bundle-1 and Bundle-2 should be the same. The probability of having a 3-

Identical state is 2
-256

 because 128 bits are fixed for a bundle and the same value will

be given to the other two bundles.

After the Super S-Box Layer of Step-5

At the beginning of Step-5, Bundle-0, Bundle-1 and Bundle-2 pairs are the same and

their differences are). It is known that the only difference between the

Super S-Boxes is round constant operation. To obtain transition for each

Bundle-0, Bundle-1 and Bundle-2 differences, should be zero on columns that

round constant is added. The other columns will definitely be the same for the first

three bundles after the Super S-Box operation. The probability of having zero

difference on 0
th
,1

th
,2

nd
,3

rd
 columns of is since 16 bits are fixed to

zero. Thus, it would be said that the difference is equal to after the Super S-

Box of Step-5 with probability . Therefore, the

probability of not having the output difference after Super S-Box of Step-

5 is if the input difference is It is obvious that the

differences) and miss in the middle of Step-5 with the

probability .

The probability shows that it is not impossible, but it is improbable. The

probability of not having the difference after five and a half steps is

68

almost one. Therefore it can be said that the output difference of Step-7 which is

 cannot come from the input difference of Step-0 which is with

the probability .

In Step-0, we use two 3-Identical input messages and
 such that . The probability of constructing

 is because 256 bits are fixed. The probability of constructing is
 because the Bundle-3 of should be the same as the Bundle-3 of .

Therefore, we can say that the output difference of Step-7 can come

from the input difference with the probability for a random

permutation. Due to the birthday paradox, one needs at least different input

pairs to observe output difference at the end of Step-7.

On the other hand, we can also build this 8-Step improbable differential distinguisher

by starting after the Super S-Box layer of Step-0 with the difference .

Now, we do not use the 3-Identical property and Bundle-0, Bundle-1 and Bundle-2

may be different from each other at the beginning of Step-0. However, their

differences should be the same right after the Super S-Box of Step-0. Therefore, we

can still say that the output difference of Step-7 which is cannot come

from the input difference of Step-0 which is with the probability
 .

The probability of observing input difference at Step-0 is for

a random permutation because 128 bits are fixed at the input. Due to the birthday

paradox, one needs at least different input pairs to observe output

difference at the end of Step-7.

In a nutshell, It can be seen that the probability of improbable differential

distinguisher is less than the probability of random permutation in both scenarios.

As mentioned in Section 1.6, since , this improbable differential

distinguisher is valid for 8-Step Shadow-512. Our 8-Step improbable differential

distinguisher is the longest differential distinguisher of Shadow-512 that has been

found yet.

69

CHAPTER 5

CONCLUSION

Differential cryptanalysis is one of the most common methods that help an attacker

exploit the differential relations between inputs and outputs of an algorithm for a

specific round. It investigates the output differences when specific input differences

are given to inputs. An output of a cryptographic algorithm should seem random.

However, it is possible to distinguish the algorithm’s output from a random

permutation by using differential cryptanalysis techniques.

In this thesis, we have worked on the Spook algorithm, which is one of the round 2

candidates of the NIST’s lightweight cryptography competition. Spook algorithm

uses Shadow-512 as an internal permutation. Since NIST encouraged the public

evaluation of candidate algorithms, we have tried finding differential distinguishers

of Shadow-512 that help us distinguish Shadow-512 from a random permutation.

The authors of Spook recommended using Shadow-512 as 6-Step. They also stated

that it could be used as 4-Step. For this purpose, we have worked on the concept of

impossible and improbable differential cryptanalysis. We have investigated

the undisturbed bits of Shadow’s S-Box to find longer impossible differentials. In

(Derbez et al., 2020), they have already found a 5-Step truncated differential

distinguisher of Shadow-512 with probability one. We have tried finding impossible

differential distinguishers of Shadow-512 that cover more steps than their

differentials. In a nutshell, we have found two different 6-Step impossible differential

distinguishers that cover full Shadow permutation by using their 5-Step truncated

differential. In addition, in (Derbez et al., 2020), they found 7-Step truncated

differential distinguisher with probability 2
-16.245

 as if Shadow-512 has a 7-Step.

From this point of view, we have tried finding longer differentials of Shadow-512.

We have found 7-Step impossible differential distinguisher with probability one.

Besides, we have found an 8-Step improbable differential distinguisher of Shadow-

512 with probability 2
-656

. We have found the longest differential distinguisher of

Shadow-512.

70

Table 5.1: Summary of truncated, impossible, and improbable differential

distinguishers on Shadow-512

Steps Method Probability

for Shadow-

512

permutation

Probability for

random

permutation

Section

5 Truncated Diff. 1 2
-128

 (Derbez et al.,

2020)

6 Truncated Diff. 2
-16.245

 2
-128

 (Derbez et al.,

2020)

6 Impossible Diff. 0 2
-128

 4.3.1

6 Impossible Diff. 0 2
-256

 4.3.2

7 Truncated Diff. 2
-16.245

 2
-128

 (Derbez et al.,

2020)

7 Impossible Diff. 0 2
-640

 or 2
-384

 4.4

8 Improbable Diff. 2
-656

2
-640

 or 2
-384

 4.5

To sum up, it would have been expected that the output of the Shadow-512 should

seem random for its security. However, we have proven that the Shadow-512 has

non-random behavior even if it is extended to eight steps. We are able to distinguish

6-,7-,8-Step Shadow-512 from a random permutation. We cannot perform a forgery

attack on Spook by using our distinguishers. To perform a forgery attack on Spook,

we need to find a collision at the output to produce the same tag. Since we found the

impossible and improbable distinguishers, we cannot specify the exact output

differences that should be obtained at the output. We can only specify which input

differences do not lead to which output differences.

71

REFERENCES

Albrecht, M. R., Driessen, B., Kavun, E. B., Leander, G., Paar, C., & Yalçin, T.

(2014). Block ciphers - Focus on the linear layer (feat. PRIDE). In J. A. Garay

& R. Gennaro (Eds.), Advances in Cryptology – CRYPTO 2014. CRYPTO 2014.

Lecture Notes in Computer Science, vol 8616. (pp. 57–76). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-662-44371-2_4

Araki, K., Satoh, T., & Miura, S. (1998). Overview of elliptic curve cryptography. In

H. Imai & Y. Zheng (Eds.), Public Key Cryptography. PKC 1998.Lecture Notes

in Computer Science, vol 1431. (pp. 29–49). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/BFb0054012

Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., &

Regazzoni, F. (2015). Midori: A Block Cipher for Low Energy. In T. Iwata & J.

H. Cheon (Eds.), Advances in Cryptology – ASIACRYPT 2015. Lecture Notes in

Computer Science, vol 9453. (pp. 411–436). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-48800-3_17

Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T., Sasaki,

Y., Sim, S. M., & Todo, Y. (2019). GIFT-COFB. In: Lightweight Cryptography

Standardization Process Round 2 Submission, NIST. https://csrc.nist.gov/

CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-

rnd2/gift-cofb-spec-round2.pdf

Bao, Z., Chakraborti, A., Datta, N., Guo, J., Nandi, M., Peyrin, T., & Yasuda, K.

(2019). PHOTON-Beetle Authenticated Encryption and Hash Family. In:

Lightweight Cryptography Standardization Process Round 2 Submission, NIST.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents

/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., & Wingers, L.

(2015). Simon and Speck: Block Ciphers for the Internet of Things.

Proceedings of the 52nd Annual Design Automation Conference on - DAC ’15,

July, 1–6. http://dl.acm.org/citation.cfm?doid=2744769.2747946

Beierle, C., Biryukov, A., Santos, L. C. dos, Großschadl, J., Perrin, L., Udovenko,

A., Velichkov, V., & Wang, Q. (2019). Schwaemm and Esch : Lightweight

Authenticated Encryption and Hashing using the Sparkle Permutation Family.

In: Lightweight Cryptography Standardization Process Round 2 Submission,

NIST. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf

72

Beierle, C., Canteaut, A., Leander, G., & Rotella, Y. (2017). Proving resistance

against invariant attacks: How to choose the round constants. In J. Katz & H.

Shacham (Eds.), Advances in Cryptology – CRYPTO 2017. CRYPTO 2017.

Lecture Notes in Computer Science, vol 10402. (pp. 647–678). Springer, Cham.

https://doi.org/10.1007/978-3-319-63715-0_22

Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,

Sasdrich, P., & Sim, S. M. (2016). The SKINNY family of block ciphers and its

low-latency variant MANTIS. In M. Robshaw & J. Katz (Eds.), Advances in

Cryptology – CRYPTO 2016. CRYPTO 2016. Lecture Notes in Computer

Science, vol 9815. (pp. 123–153). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-53008-5_5

Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G.,

Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.-X.,

Udvarhelyi, B., & Wiemer, F. (2020). Spook: Sponge-Based Leakage-Resistant

Authenticated Encryption with a Masked Tweakable Block Cipher.

https://www.spook.dev/assets/TOSC_Spook.pdf

Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G.,

Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F. X.,

Udvarhelyi, B., & Wiemer, F. (2019). Spook: Sponge-based leakage-resistant

authenticated encryption with a masked tweakable block cipher. In: Lightweight

Cryptography Standardization Process Round 2 Submission, NIST.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents

/round-2/spec-doc-rnd2/Spook-spec-round2.pdf

Berti, F., Guo, C., Pereira, O., Peters, T., & Standaert, F.-X. (2019). TEDT, a

Leakage-Resilient AEAD Mode for High Physical Security Applications. IACR

Cryptology EPrint Archive, Report 2019/137. https://doi.org/10.46586/tches.

v2020.i1.256-320

Berti, F., Pereira, O., Peters, T., & Standaert, F.-X. (2017). On Leakage-Resilient

Authenticated Encryption with Decryption Leakages. IACR Transactions on

Symmetric Cryptology, 2017(3)(3), 271–293. https://doi.org/10.46586/tosc.

v2017.i3.271-293

Bertoni, G., Daemen, J., & Peeters, M. (2009). Keccak sponge function family main

document. Submission to NIST, Round 2.

Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2007). Sponge functions. In

Ecrypt Hash Workshop 2007.

Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2012). Duplexing the

sponge: Single-pass authenticated encryption and other applications. In A. Miri

& S. Vaudenay (Eds.), Selected Areas in Cryptography. SAC 2011. Lecture

Notes in Computer Science, vol 7118 (pp. 320–337). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-28496-0_19

Beyne, T., Mennink, B., Chen, Y. L., & Dobraunig, C. (2019). Elephant v1.1. In:

Lightweight Cryptography Standardization Process Round 2 Submission, NIST,

1–48. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

73

documents/round-2/spec-doc-rnd2/elephant-spec-round2.pdf

Biham, E., Anderson, R., & Knudsen, L. (1998). Serpent: A New Block Cipher

Proposal. In S. Vaudenay (Ed.), Fast Software Encryption. FSE 1998. Lecture

Notes in Computer Science, vol 1372 (pp. 222–238). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-69710-1_15

Biham, E., Biryukov, A., & Shamir, A. (1998). Impossible Differential Attacks. In

Rump Session of CRYPTO 1998.

Biham, E., Biryukov, A., & Shamir, A. (1999). Cryptanalysis of Skipjack Reduced to

31 Rounds Using Impossible Differentials. In J. Stern (Ed.), Advances in

Cryptology — EUROCRYPT ’99. EUROCRYPT 1999. Lecture Notes in

Computer Science, vol 1592 (pp. 12–23). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-48910-X_2

Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like

cryptosystems. Journal of Cryptology, 4(1), 3–72. https://doi.org/10.1007/

BF00630563

Biryukov, Alex, & Perrin, L. (2017). State of the Art in Lightweight Symmetric

Cryptography. Cryptology EPrint Archive, Report 2017/511. https://eprint.iacr.

org/2017/511

Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.

J. B., Seurin, Y., & Vikkelsoe, C. (2007). PRESENT: An Ultra-Lightweight

Block Cipher. In Cryptographic Hardware and Embedded Systems - CHES

2007 (pp. 450–466). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-

540-74735-2_31

Bouillaguet, C., Dunkelman, O., Leurent, G., & Fouque, P.-A. (2010). Another Look

at Complementation Properties. In S. Hong & T. Iwata (Eds.), Fast Software

Encryption. FSE 2010. Lecture Notes in Computer Science, vol 6147 (pp. 347–

364). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13858-

4_20

Boura, C., Canteaut, A., & De Cannière, C. (2011). Higher-order differential

properties of Keccak and Luffa. In A. Joux (Ed.), Fast Software Encryption.

FSE 2011. Lecture Notes in Computer Science, vol 6733 (pp. 252–269).

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21702-9_15

Courtois, N. T., & Pieprzyk, J. (2002). Cryptanalysis of block ciphers with

overdefined systems of equations. In Y. Zheng (Ed.), Advances in Cryptology —

ASIACRYPT 2002. ASIACRYPT 2002. Lecture Notes in Computer Science, vol

2501 (pp. 267–287). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-

540-36178-2_17

Cryptographic competitions: CAESAR submissions, (2014). https://competitions.

cr.yp.to/caesar-submissions.html

Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., & Van Keer, R. (2019).

Xoodyak, a lightweight cryptographic scheme. In: Lightweight Cryptography

Standardization Process Round 2 Submission, NIST, Special Issue 1, 60–87.

74

https://doi.org/10.13154/tosc.v2020.iS1.60-87

Daemen, J., Mennink, B., & Van Assche, G. (2017). Full-state keyed duplex with

built-in multi-user support. In T. Takagi & T. Peyrin (Eds.), Advances in

Cryptology – ASIACRYPT 2017. ASIACRYPT 2017. Lecture Notes in Computer

Science, vol 10625 (pp. 606–637). Springer, Cham. https://doi.org/10.1007/978-

3-319-70697-9_21

Daemen, J., & Rijmen, V. (2001). The Wide Trail Design Strategy. In B. Honary

(Ed.), Cryptography and Coding. Cryptography and Coding 2001. Lecture

Notes in Computer Science, vol 2260 (pp. 222–238). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-45325-3_20

Daemen, J., & Rijmen, V. (2002). The Design of Rijndael - The Advanced

Encryption Standard. Springer Berlin Heidelberg. https://doi.org/10.1007/978-

3-662-04722-4

Derbez, P., Huynh, P., Lallemand, V., Naya-Plasencia, M., Perrin, L., &

Schrottenloher, A. (2020). Cryptanalysis Results on Spook. In D. Micciancio &

T. Ristenpart (Eds.), Advances in Cryptology – CRYPTO 2020. CRYPTO 2020.

Lecture Notes in Computer Science, vol 12172 (pp. 359–388). Springer, Cham.

https://doi.org/10.1007/978-3-030-56877-1_13

Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE

Transactions on Information Theory, 22(6), 644–654. https://doi.org/10.1109/

TIT.1976.1055638

Dinur, I., & Shamir, A. (2009). Cube attacks on tweakable black boxp Polynomials.

In A. Joux (Ed.), Advances in Cryptology - EUROCRYPT 2009. EUROCRYPT

2009. Lecture Notes in Computer Science, vol 5479 (pp. 278–299). Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01001-9_16

Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas, R., &

Unterluggauer, T. (2019). ISAP v2.0. In: Lightweight Cryptography

Standardization Process Round 2 Submission, NIST. https://csrc.nist.gov/

CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-

rnd2/isap-spec-round2.pdf

Dobraunig, C., Mendel, F., Eichlseder, M., & Schläffer, M. (2019). Ascon v1.2. In:

Lightweight Cryptography Standardization Process Round 2 Submission, NIST,

Light. Cryptogr. Stand. Process round 2 submission, NIST.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents

/round-2/spec-doc-rnd2/ascon-spec-round2.pdf

Goudarzi, D., & Rivain, M. (2017). How fast can higher-order masking be in

software? In J. Coron & J. Nielsen (Eds.), Advances in Cryptology –

EUROCRYPT 2017. EUROCRYPT 2017. Lecture Notes in Computer Science,

vol 10210 (pp. 567–597). Springer, Cham. https://doi.org/10.1007/978-3-319-

56620-7_20

Grassi, L., Rechberger, C., & Rønjom, S. (2017). Subspace Trail Cryptanalysis and

its Applications to AES. IACR Transactions on Symmetric Cryptology, 2016(2),

75

192–225. https://doi.org/10.13154/tosc.v2016.i2.192-225

Gross, H., Mangard, S., & Korak, T. (2017). An Efficient Side-Channel Protected

AES Implementation with Arbitrary Protection Order. In H. Handschuh (Ed.),

Topics in Cryptology – CT-RSA 2017. CT-RSA 2017. Lecture Notes in

Computer Science, vol 10159 (pp. 95–112). Springer, Cham.

https://doi.org/10.1007/978-3-319-52153-4_6

Grosso, V., Leurent, G., Standaert, F., Varici, K., Durvaux, F., Gaspar, L., Kerckhof,

S., & Inria, E. P. I. (2014). SCREAM & iSCREAM Side-Channel Resistant

Authenticated Encryption with Masking. CEASAR Competition, 280141, 1–33.

http://perso.uclouvain.be/fstandae/SCREAM/SCREAM_v2.pdf

Grosso, V., Leurent, G., Standaert, F. X., & Varıcı, K. (2015). LS-designs: Bitslice

encryption for efficient masked software implementations. In C. Cid & C.

Rechberger (Eds.), Fast Software Encryption. FSE 2014. Lecture Notes in

Computer Science, vol 8540 (pp. 18–37). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-46706-0_2

Guo, C., Pereira, O., Peters, T., & Standaert, F. X. (2019). Towards low-energy

leakage-resistant authenticated encryption from the duplex sponge construction.

Cryptology EPrint Archive, Report 2019/193. https://eprint.iacr.org/2019/193

Guo, J., Jean, J., Nikolic, I., Qiao, K., Sasaki, Y., & Sim, S. M. (2016). Invariant

Subspace Attack Against Midori64 and The Resistance Criteria for S-box

Designs. IACR Transactions on Symmetric Cryptology, 2016(1), 33–56.

https://doi.org/10.46586/tosc.v2016.i1.33-56

Guo, J., Peyrin, T., Poschmann, A., & Robshaw, M. (2011). The LED block cipher.

In B. Preneel & T. Takagi (Eds.), Cryptographic Hardware and Embedded

Systems – CHES 2011. CHES 2011. Lecture Notes in Computer Science, vol

6917 (pp. 326–341). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-642-23951-9_22

Hell, M., Johansson, T., Meier, W., Jonathan, S., & Hell, M. (2019). Grain-

128AEAD - A lightweight AEAD stream cipher. In: Lightweight Cryptography

Standardization Process Round 2 Submission, NIST. https://csrc.nist.

gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-

doc-rnd2/grain-128aead-spec-round2.pdf

Hellman, M. (1980). A cryptanalytic time-memory trade-off. IEEE Transactions on

Information Theory, 26(4), 401–406. https://doi.org/10.1109/TIT.1980.1056220

Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B. S., Lee, C., Chang, D., Lee, J.,

Jeong, K., Kim, H., Kim, J., & Chee, S. (2006). HIGHT: A new block cipher

suitable for low-resource device. In L. Goubin & M. Matsui (Eds.),

Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006.

Lecture Notes in Computer Science, vol 4249 (pp. 46–59). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/11894063_4

Huang, H. W. and T. (2019). TinyJAMBU: A Family of Lightweight Authenticated

Encryption Algorithms. In: Lightweight Cryptography Standardization Process

76

Round 2 Submission, NIST. https://csrc.nist.gov/CSRC/media/Projects

/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec

-round2.pdf

ISO/IEC 29192-2:2019, Information technology — Security techniques —

Lightweight cryptography — Part 2: Block ciphers, 2019. (2019).

Iwamoto, M., Peyrin, T., & Sasaki, Y. (2013). Limited-Birthday Distinguishers for

Hash Functions. In K. Sako & P. Sarkar (Eds.), Advances in Cryptology -

ASIACRYPT 2013. ASIACRYPT 2013. Lecture Notes in Computer Science, vol

8270 (pp. 504–523). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-642-42045-0_26

Iwata, T., Khairallah, M., Minematsu, K., & Peyrin, T. (2019). Romulus v1.2. In:

Lightweight Cryptography Standardization Process Round 2 Submission, NIST.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents

/round-2/spec-doc-rnd2/Romulus-spec-round2.pdf

Jean, J., Nikolić, I., & Peyrin, T. (2014). Tweaks and keys for block ciphers: The

TWEAKEY framework. In P. Sarkar & T. Iwata (Eds.), Advances in Cryptology

– ASIACRYPT 2014. ASIACRYPT 2014. Lecture Notes in Computer Science, vol

8874 (pp. 274–288). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-662-45608-8_15

Khovratovich, D., Nikolić, I., Pieprzyk, J., Sokołowski, P., & Steinfeld, R. (2015).

Rotational cryptanalysis of ARX revisited. Cryptology EPrint Archive, Report

2015/095. https://doi.org/10.1007/978-3-662-48116-5_25

Knudsen, L. R. (1994). Truncated and higher order differentials. In B. Preneel (Ed.),

Fast Software Encryption. FSE 1994. Lecture Notes in Computer Science, vol

1008 (pp. 196–211). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-

540-60590-8_16

Leander, G., Abdelraheem, M. A., AlKhzaimi, H., & Zenner, E. (2011). A

Cryptanalysis of PRINTcipher: The Invariant Subspace Attack. In P. Rogaway

(Ed.), Advances in Cryptology – CRYPTO 2011. CRYPTO 2011. Lecture Notes

in Computer Science, vol 6841 (pp. 206–221). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-22792-9_12

Leander, G., Minaud, B., & Rønjom, S. (2015). A generic approach to invariant

subspace attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In E. Oswald

& M. Fischlin (Eds.), Advances in Cryptology -- EUROCRYPT 2015.

EUROCRYPT 2015. Lecture Notes in Computer Science, vol 9056 (pp. 254–

283). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46800-

5_11

Leander, G., Tezcan, C., & Wiemer, F. (2018). Searching for subspace trails and

truncated differentials. IACR Transactions on Symmetric Cryptology, 2018(1),

74–100. https://doi.org/10.13154/tosc.v2018.i1.74-100

Liskov, M., Rivest, R. L., & Wagner, D. (2011). Tweakable Block Ciphers. Journal

of Cryptology, 24(3), 588–613. https://doi.org/10.1007/s00145-010-9073-y

77

McKay, K. A., Bassham, L., Turan, M. S., & Mouha, N. (2017). Report on

lightweight cryptography. National Institute of Standards and Technology,

NISTIR 811, 26. http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

Mendel, F., Rechberger, C., Schläffer, M., & Thomsen, S. S. (2009). The rebound

attack: Cryptanalysis of reduced whirlpool and Grøstl. In O. Dunkelman (Ed.),

Fast Software Encryption. FSE 2009. Lecture Notes in Computer Science, vol

5665 (pp. 260–276). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-642-03317-9_16

NIST. (1998). SKIPJACK and KEA Algorithm Specifications (pp. 1–23).

https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation

-Program/documents/skipjack/skipjack.pdf

NIST. (2018). Submission Requirements and Evaluation Criteria for the Lightweight

Cryptography Standardization Process. 1–17. https://csrc.nist.gov/CSRC

/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-

requirements-august2018.pdf

Peyrin, T. (2010). Improved differential attacks for ECHO and Grøstl. In T. Rabin

(Ed.), Advances in Cryptology – CRYPTO 2010. CRYPTO 2010. Lecture Notes

in Computer Science, vol 6223 (pp. 370–392). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-14623-7_20

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2),

120–126. https://doi.org/10.1145/359340.359342

Shirai, T., Shibutani, K., Akishita, T., Moriai, S., & Iwata, T. (2007). The 128-Bit

Blockcipher CLEFIA (Extended Abstract). In A. Biryukov (Ed.), Fast Software

Encryption. FSE 2007. Lecture Notes in Computer Science, vol 4593 (pp. 181–

195). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74619-

5_12

Tezcan, C. (2010). The improbable differential attack: Cryptanalysis of reduced

round CLEFIA. In G. Gong & K. C. Gupta (Eds.), Progress in Cryptology -

INDOCRYPT 2010. INDOCRYPT 2010. Lecture Notes in Computer Science,

vol 6498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

17401-8_15

Tezcan, C. (2014). Improbable differential attacks on Present using undisturbed bits.

Journal of Computational and Applied Mathematics, 259(PART B), 503–511.

https://doi.org/10.1016/j.cam.2013.06.023

Tezcan, C. (2020). Analysis of Ascon, DryGASCON, and Shamash Permutations.

Cryptology EPrint Archive, Report 2020/1458. https://eprint.iacr.org/2020/1458

Tezcan, C. (2016). Truncated, Impossible, and Improbable Differential Analysis of

ASCON. 2nd International Conference on Information Systems Security and

Privacy, 325–332. https://doi.org/10.5220/0005689903250332

Todo, Y. (2015). Structural evaluation by generalized integral property. In E. Oswald

& M. Fischlin (Eds.), Advances in Cryptology -- EUROCRYPT 2015.

78

EUROCRYPT 2015. Lecture Notes in Computer Science, vol 9056. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46800-5_12

Tromer, E., Osvik, D. A., & Shamir, A. (2010). Efficient cache attacks on AES, and

countermeasures. Journal of Cryptology, 23(1), 37–71. https://doi.org/

10.1007/s00145-009-9049-y

Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., & Kubo, H. (2008).

Impossible Differential Cryptanalysis of CLEFIA. In K. Nyberg (Ed.), Fast

Software Encryption. FSE 2008. Lecture Notes in Computer Science, vol 5086

(pp. 398–411). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-

71039-4_25

Turan, M. S., McKay, K. A., Çalık, Ç., Chang, D., & Bassham, L. (2019). Status

report on the first round of the NIST lightweight cryptography standardization

process. 1–13. https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8268.pdf

Xiang, Z., Zhang, W., Bao, Z., & Lin, D. (2016). Applying MILP method to

searching integral distinguishers based on division property for 6 lightweight

block ciphers. In J. Cheon & T. Takagi (Eds.), Advances in Cryptology –

ASIACRYPT 2016. ASIACRYPT 2016. Lecture Notes in Computer Science, vol

10031 (pp. 648–678). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-662-53887-6_24

