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ABSTRACT 

 

 

IMPOSSIBLE AND IMPROBABLE DIFFERENTIAL CRYPTANALYSIS OF 

SPOOK ALGORITHM 

 

 

BOLEL, Onur 

MSc., Department of Cyber Security 

Supervisor: Assist. Prof. Dr. Cihangir TEZCAN 

 

June 2021, 78 pages 

 

 

In recent years, the number of IoT devices increased considerably and the security of 

IoT devices became an important issue. Furthermore, most IoT devices have constrained 

resources in terms of memory, area and power. Therefore, cryptographic algorithms that 

provide their security should be suitable for the implementation on the constrained 

devices.  

In 2013, NIST initiated a lightweight cryptography project to define the standards of 

lightweight cryptography. In 2018, the lightweight cryptography project turned into a 

competition-like process to choose the most convenient algorithms for constrained 

devices as a NIST standard. 57 algorithms were applied to the project. NIST published 

all algorithms for public evaluation and encouraged third-party analyses to reveal the 

weaknesses of algorithms. 32 algorithms were chosen as round 2 candidates. 

In this thesis, we have investigated the Spook algorithm, which is one of the round 2 

candidates of the NIST’s lightweight cryptography competition. Spook is an AEAD 

algorithm that uses duplex sponge construction and tweakable block cipher. Besides, 

Spook has an internal permutation which is Shadow-512. We have worked on Shadow-

512 permutation to find a distinguisher. Shadow-512 permutation was designed as 6-

Step. The outputs of Shadow-512 permutation should seem random after the 6-Step 

operation. However, we have found two different 6-Step impossible differential 

distinguishers that cover full Shadow-512. Besides, we have found 7-Step impossible 
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distinguisher and 8-Step improbable distinguisher by adding one or more additional 

steps to Shadow-512. The 8-Step improbable differential covers the largest number of 

steps of Shadow-512 compared to previously found distinguishers in other published 

papers. To conclude, we can distinguish 6-, 7-, 8-Step of Shadow-512 from a random 

permutation by using our distinguishers.  

Keywords: Lightweight Cryptography, differential cryptanalysis, impossible differential, 

improbable differential, Shadow-512 
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ÖZ 

 

 

 

SPOOK ALGORİTMASININ İMKANSIZ VE OLASI OLMAYAN 

DİFERANSİYEL KRİPTANALİZİ 

 

 

BOLEL, Onur 

Yüksek Lisans, Siber Güvenlik Bölümü 

Tez Yöneticisi: Dr. Öğretim Üyesi Cihangir TEZCAN 

 

Haziran 2021, 78 sayfa 

 

  

Son yıllarda, IoT cihazlarının sayısı oldukça arttı ve IoT cihazlarının güvenliği önemli 

bir konu haline geldi. Ayrıca, çoğu IoT cihazı, bellek, alan ve güç açısından kısıtlı 

kaynaklara sahiptir. Bu yüzden, güvenliklerini sağlayan kriptografik algoritmalar kısıtlı 

cihazlarda uygulanmaya elverişli olmalıdır. 

2013 yılında NIST, hafif kriptografi standartlarını tanımlamak için bir hafif kriptografi 

projesi başlattı. 2018 yılında, hafif kriptografi projesi, kısıtlı cihazlar için en uygun 

algoritmaları NIST standardı olarak seçmek için yarışma benzeri bir sürece dönüştü. 

Projeye 57 algoritma başvurdu. NIST tüm algoritmaları herkesin değerlendirmesi için 

yayınladı ve algoritmaların zayıflıklarının ortaya çıkması için üçüncü taraf analizlerin i 

teşvik etti. 32 algoritma 2. tur adayları olarak seçildi. 

Bu tezde, NIST’in hafif kriptografi yarışmasının 2. tur adaylarından biri olan Spook 

algoritmasını inceledik. Spook, dubleks sünger yapısı ve ayarlanabilir blok şifre 

kullanan bir kimlik doğrulamalı şifreleme algoritmasıdır. Ayrıca, Spook’un Shadow-

512 olan dahili bir permütasyonu vardır. Bir ayırt edici bulmak için Shadow-512 

permütasyonu üzerinde çalıştık. Shadow-512 permütasyonu 6-Basamak olarak 

tasarlanmıştır. Shadow-512 permütasyonunun çıktıları 6-Basamak işlemden sonra 

rastgele olarak görünmelidir. Yine de, tam Shadow-512’yi kapsayan iki farklı 6-

Basamak imkansız diferansiyel ayırt edici bulduk. Ayrıca, Shadow-512’ye bir ya da iki 

basamak ekleyerek 7-Basamak imkansız ayırt edici ve 8-Basamak olası olmayan ayırt 

edici bulduk. 8-Basamak olası olmayan diferansiyel ayırt edici, diğer yayınlanmış 
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makalelerdeki daha önceden bulunmuş ayırt edicilerle karşılaştırıldığında Shadow-

512’nin en fazla basamağını kapsar. Sonuç olarak, ayırt edicilerimizi kullanarak 6-,7-,8-

Basamak Shadow-512’yi  rastgele permütasyondan ayırt edebiliriz. 

 

Anahtar Sözcükler: Hafif Kriptografi, diferansiyel kriptanaliz, imkansız diferansiyel, 

olası olmayan diferansiyel, Shadow-512 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Cryptology is a science that aims to protect information against third parties when 

two parties are communicating in an insecure channel. Cryptology can be divided 

into two subcategories: Cryptography and Cryptanalysis. Cryptography aims to 

design secure algorithms that can be used to encrypt information. On the other hand, 

Cryptanalysis aims to exploit the encrypted messages to reveal the information by 

using the weaknesses of the cryptographic algorithms. 

To understand the whole picture, some terms are defined. The plaintext is the 

messages that are wanted to be protected against unauthorized parties and plaintext is 

generally denoted by  . If plaintext is encrypted with a cryptographic algorithm, a 

ciphertext is obtained. A ciphertext should be incomprehensible for everyone and it 

must look like a random sequence of characters. Also, one of the essential 

components of cryptography is  -bit key. The key is used to encrypt the plaintext to 

obtain ciphertext. The security of the cryptographic algorithm depends on the key, 

and the key must always be secret even if cryptography algorithms are publicly 

known, according to Kerckhoff’s Principle. Initialization vector    and cryptographic 

nonce   that should be random are the other inputs of a cryptographic algorithm. 

Nonce should be used only once in a communication session. In addition,  -bit tag    

is used for authentication of messages. In a communication, the sender encrypts the 

plaintext and computes the tag   by using the key and then sends them to the 

receiver. The receiving end computes     by using ciphertext then checks      . If 

the tags match, it means messages are not altered by third parties.  

Cryptography includes several subjects such as Symmetric Cryptography, 

Asymmetric Cryptography and Hash Functions. Symmetric and Asymmetric 

Cryptography differ by the usage of a key of cryptographic algorithms. Asymmetric 

Cryptography algorithms use two different keys, which are called private and public 

keys. The plaintext is encrypted with one of the keys and the ciphertext should be 

decrypted with the other key. As the name indicates, the public key is publicly 

known and the private key is only obtained by the owner. Besides, asymmetric 

cryptography algorithms are also used for authentication and key exchange. RSA 

(Rivest et al., 1978), Diffie-Hellman (Diffie & Hellman, 1976) and Elliptic Curve 
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Cryptography (Araki et al., 1998) are the most known asymmetric cryptography 

algorithms. On the other hand, in symmetric cryptography, two parties have the same 

key and both encryption and decryption processes are operated with the same key. 

Block ciphers and stream ciphers are two main categories of Symmetric 

Cryptography.  

In this chapter, firstly, block ciphers and their types will be explained. Then some 

cryptanalysis techniques that are used to exploit the weaknesses of block ciphers will 

be clarified. After that, the concept of lightweight cryptography and NIST’s 

lightweight cryptography competition will be mentioned. 

1.1. Block Ciphers 

A block cipher algorithm takes  -bit input and produces  -bit output. To do that, the 

plaintext is divided into  -bit blocks, and each block is encrypted with  -bit key. The 

ciphertext is composed of these encrypted blocks. Block cipher algorithms have a 

round function that iterates the input for   times. In other words, the round function 

is applied to  -bit blocks for   rounds and then ciphertext blocks are obtained. Also, 

round keys are generated from the key to use in each round. AES (Daemen & 

Rijmen, 2002), DES, PRESENT (Bogdanov et al., 2007) are the most known block 

cipher algorithms. 

Each block cipher algorithm has a different design and round function; however, it is 

possible to group the designs into two categories which are Feistel Networks and 

Substitution Permutation Networks (SPN). In addition, some algorithms use Sponge 

Construction as a block cipher.  

SPN consists of three main components, which are key addition, substitution and 

permutation. Firstly, the plaintext block is XORed with the round key. Then, 

substitution is applied. The substitution layer consists of      -bit S-Boxes, which 

provide confusion. After that, the permutation layer which provides diffusion is 

applied. These three layers are applied for each round. After   rounds, the output is 

XORed with the last round key to produce the ciphertext block. AES (Daemen & 

Rijmen, 2002), PRESENT (Bogdanov et al., 2007) and SERPENT (Biham, 

Anderson, et al., 1998) are SPN type block ciphers. In this thesis, the Shadow-512 

permutation of the Spook (Bellizia et al., 2019) algorithm was investigated. Shadow-

512 has an SPN structure. Fig. 1.1 shows the general SPN structure. 
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Figure 1.1: Substitution Permutation Network 

Feistel Networks has two parts which are round function and swap operation. Firstly, 

the plaintext block is divided into two pieces. One of the pieces and round key are 

the input of the round function. Round function is applied to one of the pieces and 

the output of the round function is XORed with the other piece. Then two pieces are 

swapped with each other. HIGHT (D. Hong et al., 2006)  has a Feistel Network 

structure. Fig. 1.2 shows the Feistel Network. 

 

Figure 1.2: Feistel Network 

Sponge function was first introduced in (Bertoni et al., 2007) as a hash function. 

Then, it was used in the design of Keccak family (Bertoni et al., 2009) that was 

chosen as the algorithm of the SHA-3 hash function. After that, Duplex Sponge 

construction was introduced in (Bertoni et al., 2012) as an authenticated encryption 
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mode. It can be said that the design is similar to block cipher. However, the key 

schedule part does not exist. The duplex sponge construction relies on a strong 

permutation. In duplex construction, the    -bit state has two parts such as  -bit 

rate and  -bit capacity. Firstly,    -bit state initializes to zero. The initialization 

part may be different for different algorithms.  Then input block    is padded to  -

bit. After that,    is XORed with  -bit of state. The permutation   is applied to the 

state. The first  -bit of the state gives output. Fig. 1.3 shows the duplex sponge 

construction. 

 

Figure 1.3: Duplex Construction 

In this thesis, we investigated the Spook (Bellizia et al., 2019) algorithm and it has 

duplex sponge construction. In addition, the permutation    corresponds to Shadow-

512 permutation. A detailed explanation about the Spook algorithm will be given in 

Chapter 2. 

1.2. Cryptanalysis of Block Cipher 

According to Kerckhoff’s Principle, the key must always be kept secret in a 

cryptosystem even if cryptography algorithms can be known publicly. Therefore, 

most of the time, an attacker tries to find the correct key that is used in the encryption 

algorithm. There are several generic attacks that are performed to obtain key 

material. Exhaustive search is one of the most known attack types in cryptanalysis. 

An attacker captures a plaintext-ciphertext pair and tries to encrypt plaintext with all 

possible keys until correct ciphertext is observed. Similarly, if only a ciphertext is 

captured, the ciphertext can be decrypted with all possible keys until meaningful 

plaintext is observed.  If the key has  -bit, there are 2
k 

possible keys. Therefore, the 

required time in the worst-case scenario is directly proportional to the key length. 

After all, the exhaustive search may not be practical if the key length is large. 

All plaintext blocks and corresponding ciphertext blocks for a key can be captured 

and stored in a large memory. If a ciphertext wanted to be decrypted, the 

corresponding plaintext is obtained by searching in the memory. These types of 

attacks are called table attacks. For a block cipher, both plaintext and ciphertext 

blocks are  -bit blocks. There are 2
b
 possible plaintext-ciphertext pairs. If   is large, 

it is hard to find the memory space to store all data. 
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There is another technique that aims to use less memory and time. Hellman 

introduced Time Memory Trade-off Attack (Hellman, 1980) and it aims to reduce the 

required time by using pre-computed data. In this attack, only a small part of the data 

is pre-computed and stored in the memory. Therefore, when an attacker performs an 

exhaustive search to a ciphertext, an attacker needs less than 2
k
 operations to obtain 

the plaintext that exists in the table. 

The logic behind cryptanalysis is finding the correct key or revealing the secret 

information from encrypted data. As mentioned above, an exhaustive search can take 

more time than an attacker has. Also, a table attack can need a huge amount of 

memory. If an attack that reveals the correct key of a cipher needs less time than 

exhaustive search and less memory than a table attack, it can be said that the cipher is 

broken. 

The attack types can be categorized according to the data that is used. Ciphertext-

only or known-ciphertext attacks mean that an attacker has only some ciphertexts to 

find the correct key or corresponding plaintext. Exhaustive search is an example of 

ciphertext-only attacks. In known-plaintext attacks, an attacker has both plaintext and 

ciphertext pairs. Table attack is an example of known-plaintext attack. In chosen-

plaintext attacks, an attacker chooses some plaintexts to be encrypted, then captures 

the ciphertexts and makes some calculations on them to find the key. Adaptive 

chosen-plaintext attacks look like chosen-plaintext attacks. Firstly, attackers choose 

some plaintexts and obtain their corresponding ciphertexts. After performing an 

analysis of ciphertexts, attackers choose new plaintexts to encrypt and they improve 

their attacks by analyzing the new ciphertexts. 

It is possible to compare attacks in terms of resources that are needed. The volume of 

data that is needed to perform an attack is defined as data complexity. The number of 

plaintexts or ciphertexts that are used in an attack gives information about data 

complexity. Some attacks need more operation in software or hardware. Time 

complexity describes the computational time that it takes to perform an attack. To 

perform some attacks, the data should be stored in a memory. The volume of storage 

gives the memory complexity of an attack. 

1.3. Differential Cryptanalysis 

Differential cryptanalysis was first introduced in (Biham & Shamir, 1991) in the 

1980s. It is a statistical chosen-plaintext attack that analyzes the relation between 

input and output differences. It aims to find a pattern which input differences lead to 

which output differences by using the same key.  The difference is obtained by 

XORing two messages. Let   and    be two inputs of an algorithm and   and    be 

two outputs after   rounds, respectively.          denotes the input difference 

and         denotes the output difference.   has   bits and the probability of 

having   output difference is       for a random permutation. If an   input 

difference leads   output difference after   rounds with the probability      , it is 

considered as differential characteristic of an algorithm for   rounds. Also, this 

statistical property is called a distinguisher which can be used to distinguish the   

rounds of a cipher from a random permutation. The output of an algorithm should be 
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random and cannot be predicted by an adversary. A distinguisher helps the adversary 

notice whether the output is random or the algorithm’s output itself.  

 

Differential distinguisher, which is mentioned above, can be used for key-guessing. 

Firstly, a distinguisher is found for   rounds of the algorithm by an adversary. Then, 

one or more rounds of encryption are added to the top or bottom of the distinguisher. 

An adversary collects or generates   input pairs and their corresponding output 

pairs. Then, the adversary checks   input-output pairs to determine how many times 

the distinguisher is obtained for candidate keys. The number of occurrences of the 

distinguisher is counted for every possible key. As mentioned above,    denotes the 

probability of obtaining the distinguisher for a correct key and   denotes the 

probability of obtaining the distinguisher for a random permutation. In addition, 

wrong keys can be considered behaving like a random permutation. This approach is 

called Wrong-key Randomization Hypothesis. After all, an adversary has two 

binomial distributions with parameters        for a correct key and       for a 

wrong key. The expected values of two binomial distributions are        

and          . Then, the threshold   should be specified between   and    to 

determine whether the key is correct or wrong. The key counter should be bigger 

than   for a correct key and smaller than   for a wrong key. However, the key 

counter may be smaller than   for some possible correct key. It is called non-

detection and the probability of non-detection is denoted by    . Likewise, the key 

counter may be bigger than   for some possible wrong keys. It is called false alarm 

and the probability of false alarm is denoted by    . Hence, the success probability 

of an attack is      . Since the false alarm gives the wrong information about 

whether the key is correct or wrong, it causes to make extra effort to find the correct 

key. If     increases, data complexity increases. Therefore, an adversary wants to set 

    and     to a very small value. To do this, an adversary should choose   big 

enough. If   increases, the difference between   and    increases. Therefore,     

and     get smaller. However, since   is the number of the input pairs, if    

increases, the data complexity of the attack increases. Therefore, the adversary 

should determine the optimal   value. The optimal   value can be determined by 

setting     and     very close to zero. The false-alarm and non-detection 

probabilities can be found by solving the equations (1.1) and (1.2). 

 

     ∑(
 

 
*

 

   

  
       

                              

     ∑(
 

 
*

 

   

                                       

 

1.4. Truncated Differential Cryptanalysis 

Truncated differential cryptanalysis was introduced by (Knudsen, 1994). It can be 

considered as a special type of differential cryptanalysis. The differential analysis 
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aims to guess  -bit output difference of   -bit ciphertext pairs. On the other hand, in 

truncated differentials, all input and output bit differences are not explicitly defined.  

The aim is to find only part of the difference of outputs. Even obtaining 1-bit output 

difference is sufficient. 

1.5. Impossible Differential Cryptanalysis 

Impossible differential cryptanalysis was first introduced in Crypto ’98 Rump 

Sessions by (Biham, Biryukov, et al., 1998). Thereafter, Biham, Biryukov and 

Shamir performed an impossible differential attack (Biham et al., 1999) on reduced 

round Skipjack (NIST, 1998). There are many examples of impossible differential 

attacks on block ciphers. In (Tsunoo et al., 2008), they found 9-round impossible 

differentials of CLEFIA (Shirai et al., 2007) which was developed by Sony 

Corporation. In (Tezcan, 2016), 5-round impossible differential was found on 

ASCON (Dobraunig, Mendel, et al., 2019), which is one of the finalists of the 

NIST’s Lightweight Cryptography Competition.  

 

Impossible differential cryptanalysis aims that the   round truncated differential 

cannot be obtained at the output. The probability    which was mentioned in Section 

1.3 should be zero for an impossible differential attack. To obtain impossible 

differential distinguisher, the miss-in-the-middle technique is used. Firstly,   input 

difference is given to input pairs and then   input difference leads to   difference 

after   rounds in the forward direction with probability one. Similarly,   output 

difference leads   difference after    rounds in the backward direction with 

probability one. If   and   do not match in the middle, it can be said that   input 

difference does not become   output difference after        in the forward direction 

with probability one. Fig. 1.4 shows the miss-in-the-middle approach. 

 

 
 

Figure 1.4: Miss-in-the-middle technique 

 

The cipher can be distinguished from a random permutation thanks to the impossible 

differentials. If it is observed that the   input difference leads   output difference 

after        rounds, it can be said that the output does not belong        round 

version of the cipher. For   round impossible differential distinguisher where   
   , assume that the output difference   has   many fixed bits. The probability of not 

obtaining   output difference is       for one pair of random permutation output. 

If we use       pairs, the probability becomes             
 
 To find the 

approximate value of this probability, equation (1.3) is used. 

 

   
 

  
    

 
  (

 

 
*
 

  
 

  
                            

 

The approximation can be obtained by using the equation (1.4). 
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In this thesis, we found 6-Step and 7-Step distinguisher of Shadow-512 permutation 

by using impossible differential cryptanalysis. The detailed explanations will be 

given in Sections 4.3 and 4.4 about these distinguishers. 

1.6. Improbable Differential Cryptanalysis 

Improbable differential cryptanalysis was first introduced in (Tezcan, 2010). Tezcan 

performed 13,14,15-round improbable differential attacks on CLEFIA (Shirai et al., 

2007), which has 128-bit,192-bit and 256-bit key lengths, respectively. In (Tezcan, 

2014), Tezcan performed a 13-round improbable differential attack on PRESENT 

(Bogdanov et al., 2007), which is included as an international standard in (ISO/IEC 

29192-2:2019, 2019).  

Some differentials are less observable than a random permutation at the output. 

These kinds of differentials establish the idea of improbable differentials. Typically, 

an attacker desires to obtain   output difference with high probability than random 

permutation when the input difference is   for differential attacks. For improbable 

differential attacks, the purpose is to find any output difference other than   if the 

input difference is   . Let us denote the probability of observing non   output 

difference as   .  The probabilities of observing       transition are denoted as   

and     for a random permutation and the cipher, respectively. For improbable 

differential, an attacker expects that      since   output difference is less likely to 

exist for the cipher than random permutation. To conclude, the probability of 

observing    output difference if input difference is   can be defined according to 

equation (1.5). 

                                            

 

An attacker should ensure that   input difference leads   output difference with a 

low probability than random permutation. On the contrary case,     becomes bigger 

than           . Besides,    denotes the probability of observing any output 

difference other than  , it is expected that      for an impossible differential 

because   input difference never leads   output difference. It makes      , which 

means        is impossible. Therefore, it can be said that the impossible differential 

attacks are a special case of improbable differential attacks. 

In (Tezcan, 2010), Tezcan introduced almost miss in the middle technique. It looks 

like a miss-in-the-middle technique; however, the probabilities   and    are different 

than 1. After    round in the forward direction,   input difference leads   difference 

with the probability    and after    rounds in the backward direction   output 

difference leads   difference with probability   . If    and   do not match in the 

middle, it can be said that        transition cannot be obtained with the probability 

          after       rounds. This approach can be used to cover more rounds 

than impossible differentials. If one or more differentials are added to top and bottom 
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of impossible differential, the improbable differential can cover more rounds with 

probability           as in the almost miss in the middle technique. This is called 

expansion method. Although the expansion method helps an attacker find longer 

differentials to attack more rounds, it increases the data and time complexities. Since 

   increases, data complexity increases. Therefore, more time is needed to perform 

the attack. Fig. 1.5 shows the expansion method. 

 
Figure 1.5: Expanded Improbable Differentials 

1.7. Lightweight Cryptography Competition 

Internet of Things (IoT) is a concept that includes sensor networks, embedded 

systems and software that are connected and communicated over the Internet. In 

recent years, IoT devices are widely used in areas such as smart homes, medical and 

health care systems, agriculture, monitoring systems, transportation, etc. Some of 

these devices have a strong capability to perform larger computations on them; 

however, some of IoT devices are highly-constrained in terms of memory, power 

consumption and performance. Sensors, RFID tags, smart cards, key fobs, electronic 

toll collection systems, biometric systems are the major examples that use highly-

constrained devices. For example, some smart cards work with the absence of an 

internal power supply like a battery and they use electromagnetic fields to be 

powered on when they are attached to the RFID reader. Since the number of these 

types of constrained devices increases day by day, their security issues have become 

one of the crucial topics. Their data should be encrypted to provide confidentiality, 

integrity and availability. Cryptographic algorithms can be used to satisfy the 

security concern about them. However, many constrained devices use low-power 

MCUs which also have a small size of RAM. Implementation of a cryptographic 

algorithm on them can be considered as an overhead for their actual purposes. In 

fact, it can be said that a cryptographic algorithm such as AES (Daemen & Rijmen, 

2002) that uses many logic gates and needs larger RAM is not suitable on these 

constrained devices. Therefore, algorithms that have smaller permutations, smaller 

block and key sizes, simpler key schedules are more favorable for constrained 

devices. Such algorithms are called lightweight cryptographic algorithms. Most 

lightweight designs satisfy different implementation constraints and serve different 

purposes. PRESENT (Bogdanov et al., 2007), HIGHT (D. Hong et al., 2006) and 

CLEFIA (Shirai et al., 2007) aim low hardware footprint in their lightweight designs. 

On the one hand, PRIDE (Albrecht et al., 2014) and SPECK (Beaulieu et al., 2015) 

aim low memory usage on embedded processors. In (Alex Biryukov & Perrin, 2017), 

they performed a survey about lightweight designs to systematize the concept of 

lightweight algorithms by investigating more than 100 designs. 

The most comprehensive and worldwide project about lightweight cryptography was 

initiated by the National Institute of Standards and Technology (NIST) in 2013 to 

standardize lightweight cryptographic algorithms for constrained devices. In 2015, 
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First Lightweight Cryptography Workshop was held by NIST to define the 

requirements of lightweight cryptography. In 2016, NIST held the second 

Lightweight Cryptography Workshop, and then in 2017, NIST published a report on 

Lightweight Cryptography (McKay et al., 2017). Since current NIST’s cryptographic 

standards do not meet some requirements, which are performance, side-channel 

resistance, hardware and software specific metrics for constrained devices, they 

decided to start a competition for lightweight cryptography. In 2018, they announced 

submission requirements for candidate algorithms. The minimum acceptability 

requirements that were defined in (NIST, 2018) are as follows: 

 AEAD requirements: NIST expected that the candidate algorithms had 

authenticated encryption with associated data scheme (AEAD). The 

minimum size of key, nonce and tag should be 128-bit, 96-bit and 64-bit, 

respectively. The candidate AEAD algorithms should provide confidentiality 

against forgery attacks if the nonce is used only once. Besides, plaintext 

should not be produced in the decryption process if the tag is invalid. 

 Hash function requirements: It is optional that candidate algorithms can 

have hashing functionalities. The minimum output length should be 256-bit. 

The hash function should be resistant to collision and second preimage 

attacks. At least 2
112

 computations can be performed for attacks on the hash 

function. 

 Design requirements: The AEAD algorithm and optional hash function 

should be suitable for constrained devices. Algorithms should be designed by 

considering the performance on 8-bit, 16-bit, 32-bit microcontrollers, FPGAs 

and ASICs. The algorithms which are resistant against side-channel attacks, 

timing attacks, simple and differential power analysis are desired.   

Side-channel resistance, fault attack resistance, cost metrics (area, memory), 

performance measurements (latency, throughput, power consumption), suitability for 

both hardware and software are evaluation criteria that NIST defined. NIST also 

stated that third-party analysis of algorithms is desirable. After all, in 2019, 57 

different algorithms were submitted to the competition and NIST approved 56 of 

them as first round candidates. The designs of candidate algorithms were shared with 

the public for third-party analysis.  

In October 2019, NIST published the status report on first round candidates (Turan et 

al., 2019) and 32 of candidate algorithms were chosen as round 2 candidates. NIST 

gathered the criteria of selection in two main topics, which are maturity of the 

candidates and cryptanalysis of the candidates. Some algorithms were eliminated 

from the competition since their algorithms had no third-party analysis. NIST also 

stated that adequate analyses were not made to their designs by themselves to satisfy 

their security claims. Therefore, these algorithms were considered immature to 

standardize. On the one hand, some of the algorithms were eliminated from the 

competition due to third-party analyses. Significant weaknesses were found in their 

designs. The round 2 candidates are shown in Table 1.1. 
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Table 1.1: Round 2 Candidates of NIST's Lightweight Cryptography Competition 

ACE ASCON COMET DryGASCON 

Elephant ESTATE ForkAE GIFT-COFB 

Gimli Grain-128AEAD HyENA ISAP 

KNOT LOTUS-AEAD mixFeed ORANGE 

Oribatida PHOTON-Beetle Pyjamask Romulus 

SAEAES Saturnin SKINNY-AEAD SPARKLE 

SPIX SpoC Spook Subterranean 2.0 

SUNDAE-GIFT TinyJambu WAGE Xoodyak 

 

After the analysis and performance evaluation of round 2 candidates, in March 2021, 

NIST announced the finalists of the lightweight standardization process. ASCON 

(Dobraunig, Mendel, et al., 2019), Elephant (Beyne et al., 2019), GIFT-COFB 

(Banik et al., 2019), Grain128-AEAD (Hell et al., 2019), ISAP (Dobraunig, 

Eichlseder, et al., 2019), Photon-Beetle (Bao et al., 2019), Romulus (Iwata et al., 

2019), SPARKLE (Beierle et al., 2019), TinyJambu (Huang, 2019), and Xoodyak 

(Daemen et al., 2019) are the finalists of the competition. ASCON (Dobraunig, 

Mendel, et al., 2019) was also the first choice of the lightweight applications 

category of the CAESAR competition (Cryptographic competitions: CAESAR 

submissions, 2014). ASCON (Dobraunig, Mendel, et al., 2019), Elephant (Beyne et 

al., 2019), ISAP (Dobraunig, Eichlseder, et al., 2019), Photon-Beetle (Bao et al., 

2019), SPARKLE (Beierle et al., 2019), Xoodyak (Daemen et al., 2019) are the 

finalists that have permutation based algorithm. GIFT-COFB (Banik et al., 2019) and 

TinyJambu (Huang, 2019) have block cipher based designs. Romulus (Iwata et al., 

2019) is based on a tweakable block cipher design. Among finalist algorithms, the 

only algorithm that is based on stream cipher structure is Grain128-AEAD (Hell et 

al., 2019). It is expected that the final round will end up in a year. 

1.8. Our Contribution and the Structure of the Thesis 

In this thesis, we have investigated the Spook (Bellizia et al., 2019)  algorithm, 

which is one of the round 2 candidates of NIST’s Lightweight Cryptography 

competition. Spook is an AEAD algorithm that is based on a tweakable block cipher 

and duplex sponge construction. Also, Spook uses Shadow-512 as an internal 

permutation. In this thesis, we have worked on Shadow-512 permutation to find a 

distinguisher.  

In Chapter 2, the design specifications of Spook and Shadow-512 permutation will 

be explained. In Chapter 3, the 5-Step truncated differential distinguisher on 
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Shadow-512 with probability one that was first introduced in (Derbez et al., 2020) 

will be explained. Although Shadow-512 permutation was designed as 6-Step, they 

found a distinguisher that covers more than six steps which can be considered as a 

round-extended variant of Shadow-512. They found 6-, 7-Step truncated differential 

distinguishers with probability 2
-16.245

. In Chapter 4, we tried finding impossible 

differential distinguishers of Shadow-512. We have found 6-, 7-Step impossible 

differential distinguishers by using the 5-Step truncated differential of (Derbez et al., 

2020). Also, we have introduced the 8-Step improbable differential distinguisher. 

This is the first distinguisher that is found on Shadow-512 that covers 8-Step if 

Shadow-512 is considered as 8-Step.  
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CHAPTER 2 

 

 

OVERVIEW OF SPOOK 

 

 

In 2015, NIST initiated a Lightweight Cryptography project to standardize 

lightweight cryptography algorithms for constrained devices. Spook (Bellizia et al., 

2019) is one of the Round-2 candidates of the competition among 32 different 

algorithms. The main purpose of Spook is to provide a secure design in terms of both 

low-cost implementation and side-channel analysis. Spook was designed as duplex 

sponge-based (Bertoni et al., 2012) authenticated encryption with associated data 

algorithm that operates in S1P mode of operation (C. Guo et al., 2019) to provide 

leakage resistance against side-channel attacks. The S1P mode of operation, which is 

Sponge One Pass, provides that data is processed only once to produce both 

ciphertext and tag in the encryption process. It is a significant advantage for a 

lightweight design. Moreover, the secret key is only used twice for both encryption 

and decryption processes in the S1P mode of operation. In (Daemen et al., 2017), 

they stated that the duplex sponge construction is beneficial to implement 

authenticated encryption algorithms in terms of providing leakage resistance. Also, 

the S1P mode of operation uses Tweakable Block Cipher Clyde-128 and Shadow-

512 permutation that are both based on LS-design (Grosso et al., 2015), which 

consists of L-boxes and bitslice S-boxes. However, some improvements are made to 

previous LS-designs by using word-level L-Boxes instead of table look-up L-boxes. 

The LS-design of Clyde-128 and Shadow-512 has efficient slicing and masking to 

provide security against side-channel attacks, as mentioned in (Goudarzi & Rivain, 

2017; Gross et al., 2017). Moreover, the Tweakable Block Cipher (TBC) guarantees 

data integrity in case of data leakage. TBC also provides multi-user security with the 

usage of randomly chosen public tweak. 

In this chapter, firstly S1P mode of operation will be explained. Then Clyde-128 

Tweakable LS-design and Shadow-512 permutation will be introduced. The 

components of Clyde-128 and Shadow-512 will be described in detail. 

2.1. S1P mode of operation 

S1P mode of operation, ―Sponge One Pass,‖ is a leakage-resistant lightweight design 

that was introduced in (Berti et al., 2019) for AEAD schemes. S1P provides security 
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in case of nonce misuse and also makes the algorithm more resistant against side-

channel leakage.  

 

Figure 2.1: S1P mode with TBC E 

Note. S1P mode with TBC E. Reprinted from ―Spook: Sponge-based leakage-

resistant authenticated encryption with a masked tweakable block cipher,‖ by 

Bellizia et al., Lightweight Cryptography Standardization Process round 2 

submissions, NIST. Reprinted with permission. 

Fig. 2.1 shows the S1P mode of operation of Spook. Spook has a duplex sponge 

construction, so r and c represent the rate and capacity bits, respectively. The 

plaintext is denoted as M and M is divided into l blocks whose length is equal to r-bit 

except for the last block. The length of the last block of plaintext is between 1-bit and 

r-bit. A denotes the associated data and likewise the plaintext, associated data divided 

into   bits of blocks. The nonce is denoted as N, which is   bits. Randomly chosen 

secret key K is n bits and public tweak P is     bits. The last bit of the public 

tweak specifies whether single-user or multi-user. If the last bit of the public tweak P 

is set to 1 and the other bits of P is chosen randomly, the multi-user security is 

selected. On the other hand, the public tweak is set to zero for single-user security. 

For a multi-user version, public tweak is randomly chosen. The Tweakable Block 

Cipher, which is denoted by E, processes n-bit blocks. It takes     ,     , K to 

produce n-bit initial seed  .   denotes the permutation that takes      -bit input. 

The primary parameters of Spook are                         . 

Although each data that is processed in the S1P operation is considered as bitstring, 

Spook takes the input as bytestring. Therefore, firstly, bytestrings of input data are 

transformed to bitstrings. After the encryption or decryption process, the bitstrings of 

output data are transformed to bytestring to produce ciphertext or plaintext, 

respectively. 

Encryption starts with a TBC call which is E. It takes               and   as inputs 

and produces n-bit   as an initial seed.   can be considered as a key for duplex 

sponge construction to produce ciphertext blocks. Detailed explanations about TBC 

will be given in the following section. Concatenation of       and       which is 

         can be considered as the initialization vector (    of the algorithm. 

The permutation state is composed of    and  , which is      . After the first 

permutation part,  -bit associated data blocks except for the last block are processed 

with the rate bits of the state if associated data exists. The last block of associated 

data is padded with      before the processing with the state. After processing the 

associated data, the state is XORed with            and then permutation is 

applied to the state. Now, the encryption procedure starts. The first r -bit of the state 
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is XORed with the first plaintext block to produce the first ciphertext block. Then, 

capacity bits of the state are concatenated with the ciphertext to obtain 512-bit state. 

The permutation is applied to the state and the other plaintext blocks are processed in 

the same way to produce ciphertext blocks. After that, there is another TBC call at 

the end of the operation to produce the tag  .  The inputs of the second TBC call are 

       and secret key  .   is n-bit and   is (n-1)-bit.      is the first     bit of 

the permutation state. The purpose of the concatenation of 1 with   is to ensure that 

the tweak is different from the first TBC call. At the end of the procedure, the 

ciphertext, which is denoted by    is obtained by concatenation of ciphertext blocks 

and the tag.  

Decryption starts with a TBC call to produce n-bit   as an initial seed, likewise in 

the encryption. At the end of the decryption operation, there is an inverse TBC call 

which takes the tag   as an input to obtain   . If     , the operation starts to 

generate the plaintext.  It can be said that the secret key K is only used twice for the 

encryption or decryption process. Moreover, there is not an extra effort to generate 

the tag while data is processing. Therefore, it can be said that the S1P mode of 

operation is single-pass. 

2.2.  Clyde-128, Tweakable LS-Design 

As mentioned in the previous section, the S1P mode of operation uses a Tweakable 

Block Cipher to generate the authentication tag. The Tweakable LS-design of Clyde-

128 is a part of SCREAM (Grosso et al., 2014) authenticated encryption with 

associated data algorithm. The TLS-design is a tweakable variant of LS-designs 

(Grosso et al., 2015) that use efficient masking and bitslice S-Boxes to mitigate the 

risks of side-channel attacks. Such LS-Designs work on  -bit state, which is denoted 

by      . Here   denotes the size of the S-Box and   denotes the number of the 

columns. L-Box which is linear layer of Clyde-128 is composed of two rows and its 

size is   . The state consists of   rows and   columns. For Clyde-128, the design is 

defined as     and      and therefore, the state is 128-bit. The step number of 

Clyde-128 is       and each step consists of two rounds. Each round starts with an 

S-Box operation, then L-Box is applied. After that, round constant is added to state.  

Besides, the Tweakable Block Cipher algorithm of Clyde-128 uses a tweakey. 

Tweakey framework introduces a new parameter tweak    that provides larger key 

space to a block cipher. Tweakey (Jean et al., 2014)  is generated from the master 

key K and tweak T.  The tweakable block cipher which was first introduced in 

(Liskov et al., 2011) takes the plaintext, key and tweak as input to produce 

ciphertext. The tweak   can be public. The tweak addition also provides resistance 

against to related-key attacks. Clyde-128 uses the SCREAM’s (Grosso et al., 2014) 

tweakey scheduling algorithm that takes the 128-bit key and 128-bit tweak. Firstly, 

the tweak is parsed into two 64-bit pieces such that           and then three 

different tweakeys are generated according to formulas (2.1), (2.2) and (2.3). 

Tweakey is denoted by TK.   
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In the S1P mode of operation, Clyde-128 takes               and   as inputs. 

According to reference C code of Spook,      is called the padded nonce.   is 

used as a secret key and       is used as a tweak. In each step, a different tweakey 

is used. Firstly, padded nonce and the first tweakey are XORed to construct the state 

S. Then, round function is applied to the state. The second tweakey addition is 

applied at the end of the round function. This process is applied in each step. The 

components of the round function of Clyde-128 will be explained in the following 

sections. 

2.3. Shadow-512 

Shadow-512 can be considered as the permutation layer of the S1P mode of 

operation of the Spook algorithm. Shadow-512 also uses a variant of LS-designs, 

which is called multiple LS-designs. Shadow-512 works on         -bit state. 

Here   denotes the number of LS-designs which we call a bundle.   denotes the size 

of the S-box and   denotes the number of columns. For Shadow-512,    ,     

and     . The size of the state is 512-bit. In other words, there are four 128-bit 

bundles             in the state. Shadow-512 permutation has a Substitution 

Permutation Network (SPN). The 512-bit state is updated by iterating six steps. Each 

step consists of two rounds which are Round A and Round B. Round A consists of S-

Box, L-Box and round constant addition parts. Round B consists of S-Box, D-Box 

and round constant addition parts. There is also another variant of Shadow, which is 

Shadow-384. It has 384-bit state. The only difference between Shadow-512 and 

Shadow-384 is in the D-Box layer since Shadow-384 consists of three 128-bit 

bundles. In Fig. 2.2, the Shadow-512 permutation is shown. 
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Figure 2.2: Illustration of Shadow-512 

In Fig. 2.3, the byte organization of Shadow-512’s state is shown according to the 

reference C code of Shadow-512. Each number indicates the index of the byte input 

in the array.   

 

Figure 2.3: State of Shadow-512 

Each bundle consists of four 32-bit words and has 32 S-Boxes. The bit organization 

of a bundle is shown in Fig. 2.4.   
 
 denotes a bit.    denotes the row index for 

        , j denotes the column index for          .   
   denotes the most 

significant bit of the S-Box    . 
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Figure 2.4: Bit organization of a Shadow-512's bundle 

2.4. Components of Clyde-128 and Shadow-512 

Clyde-128 and Shadow-512 use the same S-Box, L-Box and round constant addition 

part in their LS-designs. Since Shadow-512 has a multiple LS-design, it needs a 

diffusion layer which is D-Box to mix bundles with each other. 

2.4.1. S-Box Layer 

S-box is the non-linear part of both Shadow-512 and Clyde-128 designs. It provides 

confusion. 4x4 S-Box is used in the Shadow-512 and Clyde-128 design. The S-box is 

the modified S-Box of Skinny (Beierle et al., 2016). NOR gates in the Skinny S-Box 

are replaced with AND gates. There are 128 S-Boxes in a Shadow-512’s state and 32 

S-Boxes in a Clyde-128’s state. Each column in the state is the input of an S-Box. S-

box and inverse S-Box are shown in Table 2.1. 

Table 2.1: S-Box and inverse S-Box of Spook in table representation 

 

S-Box can also be described with four AND and four XOR operations. The formula 

of S-Box and inverse S-Box is given below.        denotes the S-Box operation. 

            represent the four 32-bit rows of a Bundle and            represent the 

four 32-bit rows of output. 

S-Box Implementation:    S
-1

-Box Implementation 
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2.4.2. L-Box Layer 

L-Box is the linear part of both Shadow-512 and Clyde-128 designs. Each bundle 

consists of four 32-bit words. Two L-Boxes are used in a bundle. It means that the 

first and second rows are the L-Box inputs and also the third and fourth rows are the 

inputs of another L-Box. L-Box design includes right rotation and XOR operation, 

which helps prevent cache attacks (Tromer et al., 2010). 

The formula of L-Box is given below. The inputs of the L-Box are denoted as    and 

     and the outputs of the L-Box are denoted as    and      where     or     

for a bundle.   ,  ,    and    are considered as the four 32-bit rows of a Bundle and 

  ,  ,   and    are considered as the four 32-bit rows of output. The circulant matrix 

is denoted by      and its input is given in the formula below. 

                        (
                     

                           
   

                    
                           

 ) 

In this thesis work and reference C code of Spook, L-Box and inverse L-Box were 

implemented as word-level right rotations which are denoted as      and 32-bit 

XORs according to Table 2.2.  

Table 2.2: L-Box and inverse L-Box of Shadow-512 

L-Box  Inverse L-Box 

                  
                      
               
               
                 
                 

                 
                 
                 
                 
                 
                 
     

       
 

                  
                      
                  
                   

                
                
                
                
                
                
                
                
             
             
     

       

 

 

 

2.4.3. Round Constant Addition 

Clyde-128 and Shadow-512 uses 4-bit round constants that are generated from a 4-

bit LFSR. Round constant is added to 0
th
 column, which is    in Clyde-128 design. 
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For Shadow-512, round constant is added to different columns of different bundles.  

In other words, the round constant is added to     
column of bundle    such that    

to   ,    to   ,    to   ,    to   .  

Shadow-512 and Clyde-128 are designed as six steps. Since each step consists of two 

rounds: Round A and Round B, there are twelve round constants that are generated 

from LFSR. In Table 2.3, round constants of each step are shown. The first bit 

represents the least significant bit. 

Table 2.3: Round constants of Shadow-512 

 

2.4.4. D-Box Layer 

D-Box is a diffusion layer that is used to mix four bundles. It is a diffusion part of 

Shadow-512 permutation. Clyde-128 does not have a D-Box layer. S-Box, L-Box 

and round constant addition only affect a bundle itself. Due to the D-Box layer, each 

bundle diffuses to other bundles. D-Box operation is based on a near-MDS matrix 

which was used in (Banik et al., 2015). The      matrix of D-Box is given below. 

   denotes a 128-bit bundle for       . 

   
    

    
    

                      (

         
       
       
       

)   (

  

  

  

  

)  

 

In this thesis and in the reference C code of the Spook, D-Box is implemented 

according to the formula given below.   

   
              

   
             

   
              

   
              

According to the formulas above, it is obvious that three of four bundles are XORed 

with each other to construct the other bundle. It means, Bundle-0, Bundle-1 and 

Bundle-2 are XORed to obtain Bundle-3, Bundle-0, Bundle-1 and Bundle-3 are 
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XORed to obtain Bundle-2. Bundle-0, Bundle-2 and Bundle-3 are XORed to obtain 

Bundle-1. Bundle-1, Bundle-2 and Bundle-3 are XORed to obtain Bundle-0. Since 

near-MDS       matrix is an involutory matrix which is D
2
 = I, inverse D-Box 

operation is identical to D-Box operation. Therefore, the formulas given above are 

valid for inverse D-Box operation.  

2.5. Security Claims of Spook 

In (Bellizia et al., 2019), the authors of Spook stated the security of the algorithm 

based on three main components, which are S1P mode of operation, The Clyde-128 

TBC and Shadow-512 permutation. They stated that the security of the S1P mode of 

operation relies on the assumption that the secret key of TBC cannot be leaked. In 

addition, the secret key is only used twice in both the encryption and decryption 

process. They referred to (C. Guo et al., 2019) for proof of their assumptions. They 

performed the linear and differential attacks on Clyde-128 by using the wide-trail 

strategy (Daemen & Rijmen, 2001). They implied that the best linear/differential 

characteristics were found with the probability 2
-128

 after four steps. Since Clyde-128 

is designed as six steps, they believed that the Clyde-128 is resistant against 

linear/differential attacks. Also, they referred to (Boura et al., 2011) for the upper 

bound of the algebraic degree and they stated that five rounds (two and a half steps) 

are enough to reach a maximum algebraic degree. Therefore, they believed that the 

six steps of Clyde-128 provide security against algebraic attacks (Courtois & 

Pieprzyk, 2002), cube attacks (Dinur & Shamir, 2009) and division property which is 

a property of integral attacks (Todo, 2015). For division property, they used the 

MILP method (Xiang et al., 2016), a tool to search integral distinguishers and found 

a 4-Step integral distinguisher of Clyde-128. From the point of invariant attacks, 

which was previously considered to be related to the S-Box (J. Guo et al., 2016), they 

chose the round constants of Clyde-128 and Shadow-512 by taking into 

consideration of (Beierle et al., 2017). Since the round constants are invariant parts 

of the linear layer and have a major role against invariant attacks, they wanted to 

increase the dimension of the invariant subspaces of the linear layer. To provide 

security against the chosen-tweak attack for Clyde-128 TBC, they determined the 

minimum number of rounds required and doubled the number of rounds by using the 

approach in (J. Guo et al., 2011). For subspace trail analysis introduced in (Grassi et 

al., 2017), the authors used algorithmic approach which was introduced in (Leander 

et al., 2018) to compute the best subspace trails for Clyde-128. They stated that they 

found one and a half step subspace trails for Clyde-128. For Shadow-512 

permutation, since they wanted to obtain better performance results, they did not aim 

to meet strong security properties from Shadow-512. They stated that they obtained 

the upper bound of 2
-128

 for linear characteristics after two steps. For the tag 

generation, 255 bits are used and Shadow-512 permutation should provide collision 

resistance for 255 bits. The authors said that the best truncated differential 

characteristics of Shadow-512 cannot be found with the probability better than 2
-385

 

after six steps.  

The authors of Spook also stated that Shadow-512 could be used as four steps instead 

of six steps. It can be said that this statement is the motivation of (Derbez et al., 

2020) and this thesis. In (Derbez et al., 2020), they found 5-Step, 6-Step and 7-Step 
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truncated differential distinguishers. Moreover, they performed a 4-Step forgery 

attack. Their truncated differentials will be explained in detail in Chapter 3. In this 

thesis, we found 6, 7-Step impossible differential distinguisher of Shadow-512. In 

addition, we obtained 8-Step improbable differential distinguisher of Shadow-512, 

which is the largest distinguisher that is provided for this permutation.  
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CHAPTER 3 

 

 

CRYPTANALYSIS RESULT ON SPOOK BRINGING FULL-ROUND 

SHADOW-512 TO THE LIGHT 

 

 

In Chapter 2, the Spook (Bellizia et al., 2019) algorithm and its components were 

explained. As mentioned in Section 2.3, Spook uses an SPN permutation whose 

name is Shadow-512. In this chapter, the cryptanalysis result of Shadow-512 that 

was introduced in  (Derbez et al., 2020) will be explained. They found practical 

distinguishers of Shadow-512 permutation. They presented a truncated differential 

distinguisher with probability one that covers five steps of Shadow-512. This 5-Step 

distinguisher was used to find our impossible and improbable distinguishers that will 

be explained in Chapter 4. They also found a second truncated differential 

distinguisher that covers six steps of Shadow-512. In addition, they showed that there 

is a distinguisher that covers seven steps as if it is a round-extended version of 

Shadow by adding one more round at the bottom of the 6-Step truncated differential. 

They said that all these distinguishers are practical and can be verified 

experimentally. They also performed a forgery attack against four steps of Shadow-

512 in a nonce-misuse scenario. They stated that they could obtain collisions on four 

steps Shadow-512 by using the nonce three times allowed by (Berti et al., 2017).  

However, they could not use their 5-Step, 6-Step, and 7-Step truncated differential 

distinguishers on forgery attacks because the S1P mode of operation does not allow 

them to control capacity bits in the input. In this chapter, firstly, preliminary 

knowledge about the construction of truncated trails will be given. The concepts of 

Super S-Box and 3-Identical state will be explained. Secondly, 5-Step truncated 

differential distinguisher will be shown. Thirdly, 6-Step and 7-Step truncated 

differential distinguishers will be described. 
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Table 3.1: Notation of Chapter 3 

   

   

   

     
     
     
      

   
       

   
  

                          
            
                                
                     
                     
                     
                                       
                                          
                                        
                       
                        

3.1. Preliminaries of Distinguishers 

In this section, the base elements that help the authors find truncated differentials 

will be introduced. Firstly, the Super S-Box structure will be described. Then, the 3-

Identical State and its usage will be explained for Shadow-512 permutation. 

3.1.1. Super S-Box 

Shadow-512 permutation is considered as SPN. As mentioned in Chapter 2, each 

step consists of two rounds which are Round A and Round B. Round A comprises S-

Box, L-Box and round constant addition parts. Round B contains S-Box, D-Box and 

round constant addition parts. In (Derbez et al., 2020), they introduce a new layer 

which is called Super S-Box, by separating the D-Box layer from the other layers. 

Since only the D-Box layer mixes the bundles and the other layers affect only a 128-

bit bundle, each step can be represented by a Super S-Box and D-Box layer. To 

conclude, 512-bit Shadow state uses four 128-bit Super S-Boxes and one 512-bit D-

Box within a step.  

3.1.2. 3-Identical State 

3-Identical state means that inputs of three of four bundles are set to the same value 

before the Super S-Box operation of a step. In other words, the same 128-bit value is 

used for three bundles in a state. Normally, it is expected that the 3-Identical state 

cannot be preserved after the first round constant addition part. As mentioned in 

Section 2.4.3, the round constant is added to different columns for different bundles. 

Some conditions must be satisfied to keep the 3-Identical State after a Super S-Box 

and D-Box operation. Let   be 512-bit 3-Identical Shadow state such that    
         . Since Bundle-0, Bundle-1 and Bundle-2 are in the 3-Identical state, they 

will keep the 3-Identical state after the S-Box and L-Box operation. Therefore, the 

state will be  (    )            after L-Box.  
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The State after L-Box: 

      
                          

      
                         

      
                          

      
                          

The State after round constant addition: Round constant   is added according to 

bundle index. 

      
                                                      

      
                                                  

      
                                                  

      
                                                   

The State after second S-Box: 

        
                                                                   

        
                                                               

        
                                                               

        
                                                                

The State after D-Box: Three of four bundles are XORed with each other. 

        
                                                                   

       
                                                                             

       
                                                                             

       
                                                                                                                       

The State after round constant addition: Round constant    is added according to 

bundle index. 
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As can be seen that to keep the 3-Identical state after one step following equations 

should be satisfied: 

                          (3.1) 

                            (3.2) 

                          (3.3) 

The exact value of round constants   and    are known for each step index. 

Therefore, it is possible to satisfy the equations (3.1), (3.2) and (3.3) for some steps 

with some probability. The authors of (Derbez et al., 2020) showed that if the input is 

3-Identical, the probability of obtaining 3-Identical output after one step, according 

to Table 3.2. The probabilities do not depend on the bundle indices. 

Table 3.2: The probability of 3-Identical output when inputs are 3-Identical 

 

The analysis shows that satisfying these three equations depends on the round 

constants that are used in the step and the round constants depend on the step index. 

This type of analysis is known as exploiting the sparse round constants. There are 

some previous examples of exploiting sparse round constants. They are used in 

rotational cryptanalysis (Khovratovich et al., 2015), differential attacks (Peyrin, 

2010), self-similarity (Bouillaguet et al., 2010)  and invariant subspace attacks 

(Leander et al., 2011, 2015). 

3.2. 5-Step Truncated Differential Distinguisher of Shadow-512 

In (Derbez et al., 2020), they found 5-Step truncated differential distinguisher of 

Shadow-512 permutation with probability one. The 5-Step truncated differential 

distinguisher can be considered as a rebound attack (Mendel et al., 2009). They 

found a distinguisher by exploiting D-Box. The 5-Step truncated differential that is 

shown in Fig. 3.1 starts from Step-2 with the 3-Identical state and two steps are 

applied both forward and backward direction with probability one. Algorithm-1 

summarizes the 5-Step distinguisher. In this thesis, we found 6-Step and 7-Step 

impossible differential distinguishers and 8-Step improbable differential 

distinguisher of Shadow-512 permutation by using this 5-Step truncated differential. 

Therefore, it can be considered as the starting point of this thesis work. 
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Figure 3.1: 5-Step Truncated Differential of Shadow-512 

                                     with probability one 

i. Choose a random pair such that      
     and (          

     in Step-2.     must be 

set to zero on the 0th, 1st,2nd,3rd columns of a bundle. 

ii. Choose a random state       
      

iii. Compute      
      and         

        for      . Set the states at Step-2 

such that 

                   
                                   

iv. Iterate Step-4 and Step-5 on    and   
  to obtain           in Step-5  
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According to Algorithm-1, the 5-Step truncated differential starts from Step-2 with  

the 3-Identical state. In other words, the input pairs of Bundle-0, Bundle-1 and 

Bundle-2 are chosen the same, so their difference values become         ). The 

purpose is to obtain three identical differences for Bundle-0, Bundle-1 and Bundle-2 

just before the D-Box layer of Step-2. Super S-Boxes are slightly different on 

columns that round constants are added. For a bundle index j, the round constant is 

added to j
th
 column of a bundle. Therefore, 3-Identical State may not be preserved 

after the round constant addition part as mentioned in Section 3.2.2. However, the 

differences of Bundle-0, Bundle-1 and Bundle-2 must still be the same because 

round constant addition is just an XOR operation that does not change the difference. 

The impact of the round constant addition is observed in the second S-Box layer that 

is done right after the round constant addition. Since round constants are added to 

different columns of different bundles, the input of the S-Boxes will be different.  

The same input difference can lead to different output differences in the S-Box layer. 

Therefore, even if they start with three identical input differences in Step-2, they may 

not obtain three identical output differences at the end of Super S-Box. To achieve 

this, they choose the input difference   so that   does not diffuse to columns that 

round constants are added and the output difference will be  . It is obvious that   

must be set to zero on columns that round constants are added. The proof of this 

approach is explained below. 

Let   and       be two inputs for Bundle-0, Bundle-1 and Bundle-2 at the 

beginning of Step-2. After the L-Box layer, the output difference and output pairs are 

still the same for Bundle-0, Bundle-1 and Bundle-2 because the same operation is 

applied to the same bundles.  

    (       )     and     (         )         

                                                                                            

                                                                      

After the L-Box layer, round constants are added to bundles according to their 

bundle index. Then S-Box operation is applied. 

                                                                                                

                                                                        

                                                                                                

                                                                        

                                                                                                

                                                                        

The differences of Bundle-0 and Bundle-1 and Bundle-2 are identical after the Super 

S-Box layer: 



29 

 

                                                                               

                                                                               

                                                                              

In a nutshell, if the output difference of   is set to zero on columns that round 

constants are added, 3-Identical State leads to three identical output differences after 

the Super S-Box layer. Therefore, the input difference of Step-2 which is         ) 

will become           after Super S-Box layer. 

As mentioned in Section 2.4.4, three of four bundles are XORed with each other to 

build the other bundle in the D-Box layer. In other words, the D-Box layer mixes the 

bundles to provide diffusion. After the D-Box layer of Step-2, the difference 
          will become          .In Step-3, the difference            will become 
           In the D-Box layer of Step-3, Bundle-3 difference, which is   will diffuse 

to the other bundles and the difference will become          . The differences of 

Bundle-0, Bundle-1 and Bundle-2 are equal at the beginning of Step-4; however, 

they are not in 3-Identical State. Therefore, after the Super S-Box layer of Step-4, 

their differences will be different from each other. It will be          . The 

difference values of Bundle-0, Bundle-1 and Bundle-2 will be different from each 

other and the difference of Bundle-3 will be definitely zero after the Super S-Box of 

Step-4 with probability one. Now, we are going back to Step-2 to apply two steps 

inverse operation in the backward direction. The difference         ) will become 

          after the inverse D-Box layer of Step-1. Then inverse S-Box operation is 

applied. The difference at the beginning of Step-1 will be          . The difference 

of Bundle-3 will diffuse to other bundles in the inverse D-Box of Step-0. The 

difference value will become          . In Step-0, the last operation, which is 

inverse S-Box is applied to bundles and the difference           is obtained. The 

difference value of Bundle-0, Bundle-1 and Bundle-2 will be different from each 

other, but the difference of Bundle-3 will be definitely zero at the beginning of Step-

0. In a nutshell, if the difference of Step-2 is           and   is set to zero on the 

first four columns, the difference of Bundle-3 will be zero in both Step-0 and Step-5 

with probability one. 

To sum up, in (Derbez et al., 2020), they found a practical distinguisher that covers 

five steps of Shadow-512 permutation with probability one. The truncated trail starts 

from Step-2 with the 3-Identical state; however, the 3-Identical state is not preserved 

at the beginning of Step-3. In Step-4, the difference will be          . The 

difference values of Bundle-0, Bundle-1, and Bundle-2 are different from each in 

Step-4. Therefore, the authors stated that the truncated trail could not cover more 

than five steps with probability one. They also noted that the 5-Step truncated 

differential distinguisher was verified experimentally. It can be used to distinguish 

the five steps of Shadow-512 from a random permutation by using a pair of inputs.  
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3.3. 6- Step and 7-Step Truncated Differential Distinguisher of Shadow-512 

In (Derbez et al., 2020), they also found 6-Step and 7-Step truncated differential 

distinguisher by using their 5-Step truncated differential distinguisher that was 

explained in the previous section. 6-Step truncated differential distinguisher covers 

full permutation and it can be extended to distinguish 7-Step of Shadow-512, which 

is considered as round-extended version. Figure 3.2 shows the 7-Step truncated 

differential distinguisher. 

 

Figure 3.2: 7-Step Truncated Differential of Shadow-512 
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Let   and    be 512-bit Shadow-512 input messages. They found a distinguisher for 

6-Step Shadow-512, such as 

                                              with probability 2
-16.245

. 

Also, they found a distinguisher for 7-Step Shadow-512, such as 

                                              with probability 2
-16.245

. 

Algorithm-2 summarizes the 7-Step truncated differential distinguisher. 

                                      

i. Choose a difference       
   . Set   to zero except for 22nd and 23rd columns. 

ii. Choose a pair of state              and                 at the beginning of Step-

3. 

iii. Invert Step-2 on               and                 to obtain                and 

                    

iv. Invert Step-1 and Step-0 on                and                     to obtain 

zero difference in Bundle-3 such that                   ⨁     
    

    
    

   
          

v. Return this pair to satisfy the truncated trail with the probability of 2-16.24. 

 

Before starting the truncated trail, firstly, a pair of inputs should be built in Step-2. 

At the beginning of Step-2, pairs of bundles are not in a 3-Identical state. However, 

pairs of Step-2 are built so that they should be in the 3-Identical state at the 

beginning of Step-3. The input difference of Step-2         ) should be           
after Super S-Box and the difference           should be           at the end of 

Step-2. Also, the state of Step-3 should be 3-Identical. To do that, the difference   is 

set on only 22
nd

 and 23
rd

 columns. This is because the columns whose indices 22 and 

23 do not affect the output columns whose indices 0,1,2,3. In other words, the   

difference does not diffuse to the columns that round constant is added and the 

differences of these columns will be zero after Super S-Box operation. The authors 

stated that 2
16

 pairs could be generated in Step-3 to satisfy the difference condition of 

Step-2. 

Step-3 starts with the difference          . Also, it is known that the first three 

bundles are 3-Identical. In Section 3.2.2, three equations were shown to keep the 3-

Identical state if the input is 3-Identical. According to Table 3.2, the probability of 

obtaining 3-Identical output in Step-3 is 2
-9

 if inputs of Step-3 are 3-Identical. 

Step-4 starts with the difference          . Also, Bundle-0, Bundle1 and Bundle-2 

are in the 3-Identical state. The idea is to obtain the output difference           at the 

beginning of Step-5 and   must be a nonzero value.  
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Let us denote two states of Step-4 after the L-Box operation, such as           and 

             . After L-Box operation, firstly round constant is added, then S-Box 

operation is applied. After the S-Box operation, since two states are in the 3-Identical 

state, Bundle-0, Bundle-1 and Bundle-2 will be the same except the columns that 

round constants are added. At the end of Step-4, D-Box and second round constant 

addition are applied. Obviously, the first three bundles only differ by the 0
th
, 1

st
, 2

nd
 

and 3
rd

 columns. The expression of 0
th
, 1

st
, 2

nd
 and 3

rd
 columns of            and 

             at the end of Step-4 is shown below.   denotes the first round constant 

and    denotes the second round constant.  

 For          :  

        
                                                                               

         
                                                                             

        
                                                                               

       
                                                                                                 

 For             : 

  
                                                                                     

  
                                                                                     

  
                                                                                     

  
                                                                                                    

To obtain the difference           after Step-4,       
  for        must be 

satisfied. 

                                

                                 

                                 

Since these relations are obtained in Step-4, the round constant is       . The 

authors stated that the probability of satisfying all three relations is 2
-7.245

. 

Step-5 starts with the difference          . The input difference of Step-5 will 

become           after the Super S-Box. The difference value of Bundle-3   will 

diffuse to other bundles and the output difference of Step-5 will be          . This 

is the 6-Step truncated differential distinguisher with the probability     
                  . Naturally, the six steps can be extended to seven steps by 

adding an additional step with probability one. After the Super S-Box of Step-6, the 

output difference will become           with probability one. Therefore, the 

probability of having zero Bundle-3 difference at the end of Step-6 is also         , if 

pairs of Step-2 are constructed the way that they are explained. In (Derbez et al., 
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2020), they also verified these distinguishers experimentally. They stated that they 

ran Algorithm-2 for 2
22

 pairs and acquired 124 pairs. The probability of having zero 

output difference in Bundle-3 is approximately 2
-15

. Normally, to obtain such an 

output difference for a random permutation, one needs 2
64

 queries according to 

(Iwamoto et al., 2013). However, they can use 2
15

 pairs to obtain these differentials 

for 7-Step Shadow-512. 

3.4. Summary of Truncated Differential Distinguishers 

In (Derbez et al., 2020), it was shown that there is a 5-Step truncated differential with 

probability one. Also, they found a distinguisher on full permutation, which is six 

steps of Shadow-512 with probability 2
-16.245

. Naturally, the 6-Step distinguisher can 

be extended to seven steps with the same probability as if Shadow-512 is designed as 

seven steps. They stated that these distinguishers are practical and they verified 

experimentally by using their C++ implementations. In addition, (Derbez et al., 

2020) performed a forgery attack on 4-Step Shadow-512. They managed to generate 

the same tag for two different messages by using the same nonce three times. They 

used 2
30

 messages and found 41 collisions. However, they could not use their 

truncated differential distinguishers that are explained in this chapter on the forgery 

attack because the S1P mode of operation prevents them from specifying the 

capacity bits which correspond to Bundle-2 and Bundle-3 bits. Therefore their 

forgery attack starts from Step-2 and covers four steps. 

It can be said that it was one of the most comprehensive works that were performed 

on Spook. Especially, their 5-Step truncated differential distinguisher is one of the 

main subjects of this thesis work. Since their 5-Step differential works with 

probability one, we found impossible differential distinguishers by adding one or 

more rounds top and the bottom of this truncated differential. After the results of 

(Derbez et al., 2020), the authors of Spook proposed a second version of Spook, 

Spook v2 (Bellizia et al., 2020). They suggested updating the D-Box layer and round 

constants. However, Spook v2 was not considered as a round 2 candidate of NIST’s 

competition because Spook v1 is the candidate of the round 2 of the competition. 

Besides, Spook v1 was not obsoleted by their designers.  
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CHAPTER 4 

 

 

IMPOSSIBLE AND IMPROBABLE DIFFERENTIAL DISTINGUISHERS OF 

SHADOW-512 

 

 

As mentioned in Chapter 2, Spook is an authenticated encryption algorithm that uses 

the S1P mode of operation. The S1P mode of operation uses Shadow-512 

permutation. In Chapter 2, the design specifications and components of Shadow-512 

were explained in detail. In this chapter, firstly,      bit S-Boxes of Shadow-512 

will be investigated. Difference Distribution Table (DDT) and Undisturbed Bits of S-

Boxes will be introduced. Secondly, four different distinguishers that distinguish 

Shadow-512 output from a random permutation will be shown. Shadow-512 was 

designed as 6-Step. The designers of Spook also recommend that Shadow-512 can be 

used as 4-Step. In Spook (Bellizia et al., 2019), they stated that the 4-Step design of 

Shadow-512 is an interesting target for cryptanalysis. Starting from this, we found 

two different 6-Step impossible differential distinguishers and they will be explained 

in Section 4.3. Moreover, if Shadow-512 is considered as 7-Step or 8-Step, it is 

possible to find a distinguisher that covers more steps than 6-Step. In Section 4.4, the 

7-Step impossible differential distinguisher and in Section 4.5, 8-Step improbable 

differential distinguisher will be introduced. 

Table 4.1: Notation of Chapter 4 

   

   

   

  
  ,     
      

  
  

        

     

                          
            
                                
                                     
                                       
                                       
                                                 
                                        
                                                                

pair       
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4.1. DDT of S-Box and inverse S-Box. 

     bit S-Box is a non-linear part of the Shadow-512 permutation. Since it is a 

non-linear operation, the output difference can be found with some probability by 

using the Difference Distribution Table. The Difference Distribution Table shows 

that which input difference of S-Box leads to which output difference of S-Box for 

how many times. In other words, the number of every possible input difference is 

found and the number of their corresponding output differences are counted. Firstly 

every possible input pairs are XORed with each other such that       . Then, 

their output pairs are XORed such that   -        -        . The table is 

constructed by counting the   values as   -th entry. DDT of Shadow-512’s S-Box is 

shown in Table 4.2, and DDT of Shadow-512’s inverse S-Box is shown in Table 4.3. 

Table 4.2: DDT of S-Box of Shadow-512 
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Table 4.3: DDT of inverse S-Box of Shadow-512 

 

4.2.  Undisturbed Bits of S-Box and inverse S-Box 

Undisturbed Bits are a technique to find the exact output bit difference of S-Box with 

probability one. Since S-Box is a non-linear operation and its output difference can 

be found with some probability by using DDT, the undisturbed bits give the exact 

output difference bits of S-Box with probability one. Undisturbed bits help us find 

longer impossible differentials. It was used for the first time in (Tezcan, 2014). Also, 

they are used in (Tezcan, 2016) and  (Tezcan, 2020) to find the undisturbed bits of 

the S-Box of ASCON (Dobraunig, Mendel, et al., 2019).   

For example, when the input difference of S-Box is 8 (1000), the output difference of 

S-Box can be 4 (0100), 5 (0101), 9 (1001) and C (1100). It is obvious that the first bit 

of output difference remains invariant. The other bits can be ―1‖ or ―0‖; therefore, 

they are denoted as ―?‖. To conclude, if the input difference of S-Box is (1000), the 

output difference of S-Box will be (??0?) with probability one.  The undisturbed bits 

will be used in Section 4.3.2. Table 4.4 shows the Undisturbed Bits of Shadow-512’s 

S-Box and inverse S-Box. 
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Table 4.4: Undisturbed Bits of S-Box and inverse S-Box 

 

4.3. 6-Step Impossible Differential Distinguisher of Shadow-512 

In this section, two different 6-Step impossible differential distinguishers of Shadow-

512 will be explained. We found 6-Step impossible differential distinguishers by 

using the 5-Step truncated differential, which was introduced in (Derbez et al., 2020). 

The detailed explanation about 5-Step truncated differential was given in Section 3.2. 

Firstly, one more step is added to the top of 5-Step truncated differential in the 

forward direction to obtain 6-Step impossible differential distinguisher. The 

impossible differential distinguisher is obtained between Step-0 and Step-1. 

Secondly, one step and an inverse D-Box operation are added to the bottom of the 5-

Step truncated differential in the backward direction to obtain another 6-Step 

impossible differential distinguisher between Step-4 and Step-5. 
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4.3.1. Adding One More Step in the Forward Direction 

In this section, one of our 6-Step impossible differential distinguisher will be 

explained. The 6-Step impossible differential distinguisher has two parts. Firstly 

usage of the 5-Step truncated differential of (Derbez et al., 2020) will be summarized 

and then one step that is added to the top of the 5-Step truncated differential will be 

shown. The 5-Step truncated differential starts from Step-3 and consists of two steps 

in the forward direction and two steps in the backward direction. The one step 

differential starts from Step-0 in the forward direction.  The idea is to set the Bundle-

3 difference to a nonzero value at the end of Step-0. Thus, the difference of Bundle-3 

of Step-0 does not match the Bundle-3 difference of Step-1. The impossible 

differential will be obtained between the Step-0 output difference and Step-1 input 

difference. Fig. 4.1 shows the 6-Step impossible differential distinguisher. 

 

Figure 4.1: 6-Step Impossible Differential Distinguisher of Shadow-512 that starts 

from Step-3 
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Algorithm-3 details the 6-Step impossible differential distinguisher. Let    denote the 

Super S-Box operation and j denotes the bundle index.  

                                                                    

Impossible: The difference of Step-1, which is              does not match the difference of Step-1, 

which is             in the middle. 

i. Choose a random pair such that      
     and (          

     in Step-3.     must be 

set to zero on the 0th, 1st,2nd,3rd columns of a bundle. 

ii. Choose a random state       
      

iii. Compute      
      and         

        for      . Set the states at Step-3 

such that 

                   
                                   

iv. Iterate Step-4 and Step-5 on    and   
  to obtain           in Step-5  

v. The difference of Step-5            cannot come from the input difference (         

in Step-0 if the difference of Step-3 is (        . 

 

According to Algorithm-3, the truncated trail starts from Step-3 with the 

difference          ). The first three bundles are in a 3-Identical state and their 

differences are the same. After two steps in the forward direction, the difference will 

become           with probability one. The difference value of the first three 

bundles can be any value, but the difference of Bundle-3 will be definitely zero in 

Step-5. In a similar way, two steps in the backward direction are applied to bundles 

and the difference          ) will become           . The difference value of 

Bundle-0, Bundle-1 and Bundle-2 can be any value other than zero; however, the 

difference of Bundle-3 will be absolutely zero at the beginning of Step-1. This is 5-

Step truncated differential of (Derbez et al., 2020) and the detailed explanation was 

given in Section 3.2. 

In Table 4.5, the one step truncated differential that starts from Step-0 is shown. The 

purpose is to prove the nonzero Bundle-3 difference after one step in the forward 

direction.  

 

 

 

 

 

 



41 

 

Table 4.5: 1-Step in the forward direction to obtain 6-Step impossible differential 

distinguisher 

 Bundle-0 Bundle-1 Bundle-2 Bundle-3 

Initialization                                                     

S-Box     
         

        
         

        
         

        
         

    

L-Box     
          

         
          

         
          

         
          

     

RC     
           

          
           

          
           

          
           

      

S-Box     
           

            
           

            
          

           
         

       

D-Box 

     
          

          
      

  
     

          
          

       

         
    

     
          

          
      

  
     

          
          

       

         
   

     
          

          
      

  
     

          
          

       

         
    

     
          

          
      

  
     

          
          

       

         
     

 

To obtain nonzero Bundle-3 difference at the end of Step-0, there are some 

constraints about defining Step-0 pairs in the Initialization part: 

 The value of difference     can be any value. The only condition is that 

Bundle-0 and Bundle-1 pairs should be chosen the same.            and 

           should be satisfied. 

 The value of the difference     must be different from approximately 2
76

 

different difference values that will be explained later.   

 The value of the difference     can be any value. Input pairs that are chosen 

for Bundle-3 can be random. 

 

S-Box and L-Box Layer: 

In the first S-Box layer, since Bundle-0 and Bundle-1 pairs are the same, the output 

of the S-Box layer and their differences will become the same value.  Moreover, it is 

obvious that after the L-Box layer, Bundle-0 and Bundle-1 pairs and their differences 

are still the same since inputs of the L-Box layer are the same. 

The input pairs are identical for Bundle-0 and Bundle-1.  
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 For Bundle-0:  

     (    )       
                 (    )       

  

  
      (    

      
 )       

        
     

     (     
 )       

        (     
 )       

   

  
    (    

       
  )       

         
     

 For Bundle-1:  

     (    )       
                (    )       

           

  
      (    

      
 )       

        
     

                    (     
 )       

               (     
 )       

       

  
    (    

        
  )       

         
      

Output pairs will be identical for Bundle-0 and Bundle-1.     
         

            
        

  . 

 For Bundle-2: 

    (    )       
                (    )       

           

  
      (    

      
 )       

        
     

    (     
 )       

               (     
 )       

       

  
    (    

        
  )       

         
      

 For Bundle-3: 

    (    )       
                (    )       

           

  
      (    

      
 )       

        
     

    (     
 )       

               (     
 )       

       

  
    (    

        
  )       

         
      

 

Round  Constant Addition: 

The only part that changes the value of Bundle-0 and Bundle-1 pairs is the round 

constant addition part. As explained in Section 2.4.3, round constant operation is 

applied to the different columns for Bundle-0 and Bundle-1. The round constant is 

added to 0
th
 column for Bundle-0 and 1

st
 column of Bundle-1. After round constant 
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addition part, Bundle-0 and Bundle-1 pairs are slightly different from each other; 

however, their differences are still the same since round constant addition is just an 

XOR operation. Although it affects the values of pairs, the differences are not 

affected by round constant. 

 For Bundle-0: 

          (     
  )       

                     (     
  )       

             

                
  (    

         
   )       

           
       

 For Bundle-1: 

         (     
  )       

                     (     
  )       

             

                
  (    

         
   )       

          
       

The output pairs are slightly different from each other.     
          

             
         

   . 

In Table 4.6, the bits that are represented by grey are different for Bundle-0 and 

Bundle-1 input pairs. All the remaining bits are the same for Bundle-0 and Bundle-1 

pairs. 

Table 4.6: The bits that are different for Bundle-0 and Bundle-1 

3

1 

3

0 

2

9 

2

8 

2

7 

2

6 

2

5 

2

4 

2

3 

2

2 

2

1 

2

0 

1

9 

1

8 

1

7 

1

6 

1

5 

1

4 

1

3 

1

2 

1

1 

1

0 

9 8 7 6 5 4 3 2 1 0 

                                

                                

                                

                                

 

 For Bundle-2: 

          (     
  )       

                     (     
  )       

             

                
  (    

         
   )       

           
       

 For Bundle-3: 

         (     
  )       

                     (     
  )       

             

                
  (    

         
   )       
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Second S-Box Layer: 

The operation continues with the second S-Box layer. After the second S-Box layer, 

Bundle-0 and Bundle-1 pairs and their differences are still the same except for the 0
th
 

and 1
st
 columns since the same input differences may lead to different output 

differences if two input columns of S-Box are different from each other. In this case, 

only two columns of Bundle-0 and Bundle-1 may be different and the other columns 

are definitely the same. Since there is a slight possibility that 0
th
 and 1

st
 columns are 

different for Bundle-0 and Bundle-1 pairs, it is assumed that they are different. 

 For Bundle-0:  

            (     
   )       

                            (     
   )       

         

          
      (    

          
    )       

            
         

 For Bundle-1:  

           (     
   )       

                             (     
   )       

             

  
      (    

            
    )       

             
        

The output pairs of Bundle-0 and Bundle-1 are almost the same except for the least 

significant two columns.     
          

              
          

    . Therefore,       . 

 For Bundle-2:  

            (     
   )       

                            (     
   )       

         

          
      (    

          
    )       

            
        

 For Bundle-3:  

           (     
   )       

                             (     
   )       

             

  
      (    

            
    )       

             
        

D-Box Layer: 

In the D-Box layer, as mentioned earlier in Section 2.4.4, three of four bundles are 

XORed with each other to construct other bundle. 

 

 For Bundle-0: 

           (    
         

         
    )       

           
           

         
      

           (    
         

         
    )       

           
           

          
      



45 

 

        
         (    

         
         

    )       (    
         

         
    ) 

  
         

            
        

 For Bundle-1: 

           (    
         

         
    )       

           
           

         
      

           (    
         

         
    )       

           
           

          
      

        
         (    

         
         

    )       (    
         

         
    ) 

  
          

            
        

It is known that Bundle-0 and Bundle-1 pairs are almost the same before the D-Box 

operation. Therefore, the difference value of Bundle-2 will come from Bundle-3 and 

the difference value of Bundle-3 will come from Bundle-2 after the D-Box layer. 

 For Bundle-2: 

           (    
         

         
    )       

           
           

         
      

           (    
         

         
    )       

           
           

          
      

Recall that     
          

     and     
          

     ; therefore,     
            

     and     
           

    . 

   
         (    

         
         

    )       (    
         

         
    )      

           
        

It can be said that     . 

 For Bundle-3: 

           (    
         

         
    )       

           
           

         
      

           (    
         

         
    )       

           
           

          
      

Recall that      
           

              
           

     ; therefore,     
            

     and     
           

    .  

  
         (    

         
         

    )       (    
         

         
    )      

           
        

It can be said that     . 

After the D-Box layer, the difference value of Bundle-3 comes from     
           

     

except for the 0
th
 and 1

st
 column. The idea is that if      

           
         is not equal to 

zero, Bundle-3 cannot have zero difference after the D-Box layer of Step-0. This 

brings up the question. Which input difference should not be given to the Bundle-2 at 

the beginning of Step-0 so that the difference value of Bundle-2 (    
           

     ) after 

the second S-Box layer is not equal to zero? Thus, it will be proven that the value of 

     cannot be zero. 
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In Table 4.7, the difference value of Bundle-2 that should not be obtained after the 

second S-Box layer is shown. The difference value of the least significant two 

columns of Bundle-2 can be any value. Since Bundle-0, Bundle-1 and Bundle-2 are 

XORed with each other to build Bundle-3 in the D-Box layer, the difference value of 

the least significant two columns of Bundle-3 can be zero. Therefore, if it is 

guaranteed that the difference of other columns of Bundle-2 cannot be zero, the 

difference of Bundle-3 will be nonzero after the D-Box.  

Table 4.7: The difference of Bundle-2 that should not be obtained after the second S-

Box layer 

3

1 

3

0 

2

9 

2

8 

2

7 

2

6 

2

5 

2

4 

2

3 

2

2 

2

1 

2

0 

1

9 

1

8 

1

7 

1

6 

1

5 

1

4 

1

3 

1

2 

1

1 

1

0 

9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   

 

Now, we should think in the opposite way. If Table 4.7 represents the output 

difference of Bundle-2 after the second S-Box layer, the output difference of L-Box 

must also be identical to Table 4.7. Because the only way that makes the output 

difference zero after the S-Box operation is setting the input difference to zero. 

Therefore, in Table 5.8, it is shown that there are 36 possible Bundle-2 difference 

values that give the zero output difference except for the 0
th
 and 1

st
 column after the 

L-Box layer. Each cell represents a difference value of a Bundle-2 that should not be 

given as input difference of L-Box. 

 

 Let          (

        
        
        
        

)  and then    -     (

        
        
        
        

)   (

        
        
        
        

) 

 

Therefore,    -     (

        
        
        
        

)   (

        

        

        

        

)  
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Table 4.8: Possible input differences of L-Box that makes the output difference zero 

0x6a1b93b3 
0x600ed073   

0x6a1b93b3 

0x600ed073 

0x6a1b93b3 
0x600ed073   

0xbf188a19    

0x65047193 

0x6a1b93b3   
0x600ed073   

0x600ed073   

0xb50dc9d9 

0x6a1b93b3   
0x600ed073   

0xb50dc9d9   

0xb0076839 

0x6a1b93b3   
0x600ed073   

0x060cc140       

0xb3010899 

0x6a1b93b3 
0x600ed073 

0xb3010899 

0x030660a0 

0xbf188a19    
0x65047193   

0xbf188a19    

0x65047193 

0xbf188a19 
0x65047193   

0x600ed073    

0xb50dc9d9 

0xbf188a19 
0x65047193   

0xb50dc9d9  

0xb0076839 

0xbf188a19   
0x65047193   

0x060cc140     

0xb3010899 

0xbf188a19   
0x65047193  

0xb3010899  

0x030660a0 

0xbf188a19 
0x65047193 

0x6a1b93b3 

0x600ed073 

0x600ed073   
0xb50dc9d9   

0x600ed073  

0xb50dc9d9 

0x600ed073   
0xb50dc9d9  

0xb50dc9d9   

0xb0076839 

0x600ed073  
0xb50dc9d9  

0x060cc140     

0xb3010899 

0x600ed073  
0xb50dc9d9  

0xb3010899  

0x030660a0 

0x600ed073  
0xb50dc9d9  

0x6a1b93b3  

0x600ed073 

0x600ed073 
0xb50dc9d9 

0xbf188a19 

0x65047193 

0xb50dc9d9   

0xb0076839  

0xb50dc9d9  

0xb0076839 

0xb50dc9d9 

0xb0076839 

0x060cc140         

0xb3010899 

0xb50dc9d9 

0xb0076839   

0xb3010899  

0x030660a0 

0xb50dc9d9  

0xb0076839   

0x6a1b93b3 

0x600ed073 

0xb50dc9d9   

0xb0076839  

0xbf188a19 

0x65047193 

0xb50dc9d9 

0xb0076839 

0x600ed073 

0xb50dc9d9 

0x60cc140   

0xb3010899     

0x060cc140    
0xb3010899 

0x060cc140     

0xb3010899  

0xb3010899 
0x030660a0 

0x060cc140      

0xb3010899 

0x6a1b93b3   
0x600ed073 

0x060cc140    

0xb3010899  

0xbf188a19  
0x65047193 

0x060cc140      

0xb3010899  

0x600ed073  
0xb50dc9d9 

0x060cc140 

0xb3010899 

0xb50dc9d9 
0xb0076839 

0xb3010899  

0x030660a0     

0xb3010899  
0x030660a0 

0xb3010899  

0x030660a0    

0x6a1b93b3  
0x600ed073 

0xb3010899  

0x030660a0   

0xbf188a19    
0x65047193 

0xb3010899  

0x030660a0    

0x600ed073 
0xb50dc9d9 

0xb3010899  

0x030660a0    

0xb50dc9d9  
0xb0076839 

0xb3010899 

0x030660a0 

0x060cc140 
0xb3010899 

 

The difference values that are shown in Table 4.8 also can be considered as the 

output difference of the first S-Box layer. According to DDT, all possible input 

difference values of the first S-Box can be found practically.  

For example, Bundle-2 output difference after the first S-Box layer is (

        

        

        

        

). 

 

Binary representation of this difference is: (

                                
                                
                                
                                

). 

 

Recall that S-Box operation is applied column by column and this difference value is 

the output difference of the first S-Box layer. With the help of DDT, all possible 

input differences of S-Boxes can be found.  
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If we multiply the numbers of all possible input differences for each column, it is 

seen that there are 2
54.0947

 possible input differences of S-Box for  (

        

        

        

        

). 

Recall that, there are 36 different output differences that should not be obtained after 

the first S-Box operation. Therefore, when this calculation is made for all 36 

different output difference structures, it will be seen that there are approximately 2
76

 

input difference values that cannot be given as input difference of the first S-Box. To 

conclude, at the beginning of Step-0, there are approximately (2
128

 – 2
76

) possible 

input differences that can be given to Bundle-2. 

 

By this point, it was proven that Bundle-0 and Bundle-1 almost have identical 

difference values and identical pairs except 0
th
 and 1

st
 column after the second S-Box 

layer. Moreover, it is guaranteed that the difference value of Bundle-2 cannot be zero 

after the second S-Box layer. Finally, in the D-Box layer, since Bundle-0, Bundle-1 

and Bundle-2 are XORed with each other to construct Bundle-3, the difference of 

Bundle-3 cannot be zero with probability one. The difference            cannot 

match the difference           between Step-0 and Step-1. Therefore, it can be said 

that the output difference of Step-5, which is           cannot come from the input 

difference of Step-0, which is           with probability one if the output 

difference of Super S-Box of Step-3 is (        .  

                                               

To sum up, 6-Step impossible differential distinguisher was obtained. Since at the 

beginning of Step-0, the input difference is defined as          , there are      
           possible input difference structures that can be generated. It can be said 

that the number of possible inputs is approximately     . Therefore, this impossible 

differential holds with the probability of 2
-128

 for a random permutation and due to 

the birthday paradox, the impossible differential distinguisher needs 2
64

 different 

pairs to distinguish Shadow-512 from a random permutation with probability one. 

According to (Derbez et al., 2020), the probability of their 6-Step truncated 

differential distinguisher is          . Compared to their result, our distinguisher 

works with probability one. Although our distinguisher has a better probability, a 

distinguishing attack on a random permutation would require around 2
64

 pairs due to 

the filtering conditions on the input pairs. 
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4.3.2. Adding One More Step in the Backward Direction  

In this section, another 6-Step impossible differential distinguisher will be explained. 

The 6-Step impossible differential distinguisher consists of two parts. Firstly, 5-Step 

truncated differential, which was explained in Section 3.2 will be summarized. 

Secondly, the one step in the backward direction that is added to the bottom of the 5-

Step truncated differential will be explained. The 5-Step truncated differential starts 

from Step-2 and the difference propagates with probability one along with two steps 

in the forward direction and two steps in the backward direction. The one step starts 

from Step-5 and finishes up with inverse D-Box operation of Step-4 with probability 

one. The idea is to set the Bundle-3 difference to a nonzero value after one step and 

inverse D-Box operation with probability one so that it does not match the difference 

of Bundle-3, which is zero in Step-4.  

 

Figure 4.2: 6-Step Impossible Differential Distinguisher of Shadow-512 that starts 

from Step-2 
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Algorithm-4 details the 6-Step impossible differential distinguisher. Let    denote the 

Super S-Box operation and j denotes the bundle index. 

                                                                      

Impossible: The difference of Step-4, which is            does not match the difference            
in the middle. 

i. Choose a random pair such that      
     and (          

     in Step-3.     must be 

set to zero on the 0th, 1st,2nd,3rd columns of a bundle. 

ii. Choose a random      
     . 

iii. Compute      
      and         

        for      . Set the states  at Step-2 

such that 

                   
                                   

iv. Invert Step-1 and Step-0 to obtain           at the beginning of Step-0.  

v. The difference of Step-5             cannot come from the input difference           

in Step-0 if the difference of Step-2 is (        . 

 

According to Algorithm-4, the truncated trail starts from Step-2 with the 

difference         ). The first three bundles are in a 3-Identical state. After two 

steps in the backward direction, the difference will become            with 

probability one. Similarly, two steps in the forward direction are applied to the 

bundles in Step-2 and the difference           will become           after Super 

S-Box operation of Step-4 with probability one. This is the 5-Step truncated 

differential of (Derbez et al., 2020) and the detailed explanation of this was given in 

Section 3.2. As can be seen in Fig. 4.2, the difference of Bundle-3 is zero after the 

Super S-Box of Step-4.  

In Table 4.9, the one step that starts from Step-0 is shown. The purpose is adding one 

step and an inverse D-Box to obtain the nonzero Bundle-3 difference at the end of 

the inverse D-Box of Step-4.  
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Table 4.9: 1-Step in the backward direction to obtain 6-Step impossible differential 

distinguisher 

 Bundle-0 Bundle-1 Bundle-2 Bundle-3 

Initialization                                                      

Inverse 

D-Box 

                  

  

                   

         

                  

  
                     

         

                  

  
                     

         

                  

  
                     

         

Inverse 

S-Box 
    

         
        

         
        

         
        

         
    

RC     
          

         
          

         
          

         
          

     

Inverse 

L-Box 
    

           
          

           
          

           
          

           
      

Inverse 

S-Box 
    

          
            

           
            

            
           

            
       

Inverse 

D-Box 

 

     
          

          
      

  
     

          
          

      

 
          
    
 

     
          

          
      

  
     

          
          

       

         

   

     
          

          
      

  
     

          
          

      

          
     

     
          

          
      

  
     

          
          

       

          

     

 

Note that before the D-Box layer of Step-5, there is a round constant addition part. 

Since round constant addition does not affect the difference value and also it is 

known which round constant value is added to bundles, this round constant addition 

part is skipped. Therefore, the pairs should be defined after round constant addition 

part of Step-5.  

 

To obtain nonzero Bundle-3 difference at the end of Super S-Box of Step-4, there are 

some constraints about defining Step-5 pairs in the Initialization part: 

 The value of difference     can be any value. The only condition is that 

Bundle-0 and Bundle-1 pairs are chosen the same.            and           

should be satisfied. 

 The value of the difference     can be any value.  

 The value of the difference     has an exact value. One bit difference should 

be given to the pairs. The difference value can be seen in Table 4.10. 
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In this iteration, each row of a bundle is represented with binary notation. The bits 

that are shown as     can be 1 or 0.  

Table 4.10: Initial values of bundles at the end of Step-5 

 Initialization 

 

Bundle-0 

????????????????????????????????  

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is   

 

Bundle-1 

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is   

 

Bundle-2 

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is   

 

Bundle-3 

00001000000000000000000000000000 

00000000000000000000000000000000 

00000000000000000000000000000000 

00000000000000000000000000000000

Value is   

 

 

Firstly, the difference value is given to the pairs according to constraints. Then, the 

distribution of the difference value will be observed in each layer. 

 

Inverse D-Box Layer: 

In the inverse D-Box layer of Step-5, three of four bundles are XORed with each 

other to construct the other bundle. Since Bundle-0 and Bundle-1 pairs are the same, 

after the inverse D-Box layer, Bundle-2 will have the difference of Bundle-3 and 

Bundle-3 will have the difference of Bundle-2. The pairs of Bundle-0 and Bundle-1 

are still identical. 

For Bundle-0:      
                       and      

                       

        
          

                                                   

For Bundle-1:     
                        and      
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For Bundle-2:     
                        and      

                       

        
          

                                                  

For Bundle-3:     
                        and      

                       

        
          

                                                   

After the inverse S-Box layer, the difference of Bundle-0, Bundle-1 and Bundle-3 are 

still unknown. However, the output differences of the inverse S-Box layer are still 

the same for Bundle-0 and Bundle-1 because the same inputs produce the same 

outputs in the inverse S-Box layer.     
       

  and     
       

  is satisfied after the 

inverse S-Box layer. The difference value of Bundle-2 can be found by using 

Undisturbed Bits technique that is explained in Section 4.2. According to Table 4.4, 

the difference value of 27
th 

column of Bundle-2 (1000) leads to (0??1) difference. 

Table 4.11 shows the difference values after the inverse D-Box and inverse S-Box 

operation 

Table 4.11: Inverse D-Box and Inverse S-Box of Step-5 

 STEP-5  

 Inverse D-Box Inverse S-Box 

 

Bundle-

0 

????????????????????????????????  
???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is   

????????????????????????????????  
???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is   

 

Bundle-
1 

????????????????????????????????  

???????????????????????????????? 

???????????????????????????????? 
???????????????????????????????? 

Value is   

????????????????????????????????  

???????????????????????????????? 

???????????????????????????????? 
???????????????????????????????? 

Value is   

 

Bundle-
2 

00001000000000000000000000000000 
00000000000000000000000000000000 

00000000000000000000000000000000 

00000000000000000000000000000000 

Value is   

00000000000000000000000000000000 
0000?000000000000000000000000000 

0000?000000000000000000000000000 

00001000000000000000000000000000 

Value is   

 

Bundle-
3 

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 
???????????????????????????????? 

Value is   

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 
???????????????????????????????? 

Value is   
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Round constant addition and L-Box Layer: 

The round constant is added to bundles after the inverse S-Box layer. Recall that the 

round constant addition part does not change the difference value; however, for a 

bundle index j, the 4-bit round constant is XORed with the column index j. It means 

round constant is added to 3
rd 

column of Bundle-3, 2
nd

 column of Bundle-2, 1
st
 

column of Bundle-1 and 0
th
 column of Bundle-0. Since round constant is added to 

different positions for each bundle, it is distributed to different positions for different 

bundles in the linear layer, which is inverse L-Box.  

As can be seen in the Tables between 4.12 and 4.19, round constant bits are 

distributed to other bits in the inverse L-Box layer.  Most of the bits are affected and 

they are marked as grey.   

Table 4.12: Round constant addition for Bundle-0 

3

1 

3

0 

2

9 

2

8 

2

7 

2

6 

2

5 

2

4 

2

3 

2

2 

2

1 

2

0 

1

9 

1

8 

1

7 

1

6 

1

5 

1

4 

1

3 

1

2 

1

1 

1

0 

9 8 7 6 5 4 3 2 1 0 

                                

                                

                                

                                

 

Table 4.13: The impact of round constant addition after inverse L-Box operation for 

Bundle-0 

3

1 

3

0 

2

9 

2

8 

2

7 

2

6 

2

5 

2

4 

2

3 

2

2 

2

1 

2

0 

1

9 

1

8 

1

7 

1

6 

1

5 

1

4 

1

3 

1

2 

1

1 

1

0 

9 8 7 6 5 4 3 2 1 0 

                                

                                

                                

                                

 

 

  



55 

 

Table 4.14: Round constant addition for Bundle-1 
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Table 4.15: The impact of round constant addition after inverse L-Box operation for 

Bundle-1 
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Table 4.16: Round constant addition for Bundle-2 
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Table 4.17: The impact of round constant addition after inverse L-Box operation for 

Bundle-2 
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Table 4.18: Round constant addition for Bundle-3 
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Table 4.19: The impact of round constant addition after inverse L-Box operation for 

Bundle-3 
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The impact of the distribution of round constant bits in the inverse L-Box layer 

shows that Bundle-0 and Bundle-1 pairs are not completely identical anymore after 

the inverse L-Box layer. However, round constant bits do not affect all 128 bits of a 

bundle. Some of the bits will not change and they are still identical for Bundle-0 and 
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Bundle-1 pairs. Note that 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of the Bundle-0 and 

Bundle-1 pairs are not affected by round constant bits in the inverse L-Box part. In 

Table 4.20, the bold ―?‖ bits of Bundle-0 and Bundle-1 differences are still unknown; 

however, it is proven that 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of their pairs are 

identical. Also, the difference value of Bundle-0 and Bundle-1 is still the same and 

unknown. The similarity of bundle’s pairs will be useful in the inverse D-Box part of 

Step-4 because it’s expected that 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of Bundle-0 and 

Bundle-1 pairs will still be the same after the inverse S-Box operation. Then, they 

will cancel out each other in the inverse D-Box part.  

Table 4.20: Round constant addition and inverse L-Box of Step-5 

 STEP-5  

 RC Inverse L-Box 

 

Bundle-

0 

????????????????????????????????  

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is   

????????????????????????????????  

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is   

 

Bundle-

1 

????????????????????????????????  

???????????????????????????????? 
???????????????????????????????? 

???????????????????????????????? 

Value is   

????????????????????????????????  

???????????????????????????????? 
???????????????????????????????? 

???????????????????????????????? 

Value is   

 

Bundle-
2 

00000000000000000000000000000000 
0000?000000000000000000000000000 

0000?000000000000000000000000000 

00001000000000000000000000000000 

Value is   

0000000000??00000??00??00000???0 
??00??0??00??00000???0000?000?00 

??00??0??01??00001???1100?001?10 

11001101100??00000??10??01000??? 

Value is   

 

Bundle-

3 

????????????????????????????????  

???????????????????????????????? 

???????????????????????????????? 
???????????????????????????????? 

Value is   

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 
???????????????????????????????? 

Value is   

According to Table 4.20, the difference value of Bundle-2 is distributed to other bits 

in the inverse L-Box layer. Some columns are still zero and some columns do not 

have any bits whose value is 1. It means these columns may be zero. On the other 

hand, columns with at least one ―1‖ bit cannot have zero difference. This approach 

will be useful in the inverse S-Box layer. 

Inverse S-Box and Inverse D-Box Layer: 

After the inverse S-Box layer, the difference values of Bundle-0, Bundle-1 and 

Bundle-3 are still unknown. However, since 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 columns of 
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Bundle-0 and Bundle-1 pairs are identical, their difference values will still be 

identical after the inverse S-Box layer. The difference value of other columns may be 

different because inputs of the S-Boxes are different.  

Table 4.21: Inverse S-Box of Step-5 and inverse D-Box of Step-4 

 STEP-5  STEP-4  

 Inverse S-Box Inverse D-Box 

 

Bundle-0 

????????????????????????????????  

???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is    

????????????????????????????????  

???????????????????????????????? 
???????????????????????????????? 

???????????????????????????????? 

Value is Y 

 

Bundle-1 

????????????????????????????????  

???????????????????????????????? 
???????????????????????????????? 

???????????????????????????????? 

Value is    

????????????????????????????????  
???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 
Value is Z 

 

Bundle-2 

xx00xx0xx0x??0000x??xxx?0x00x?x? 

xx00xx0xx0x??0000x??xxx?0x00x?x? 

xx00xx0xx0x??0000x??xxx?0x00x?x? 
xx00xx0xx0x??0000x??xxx?0x00x?x? 

Value is S 

????????????????????????????????  
???????????????????????????????? 

???????????????????????????????? 

???????????????????????????????? 

Value is    

 

Bundle-3 

????????????????????????????????  

???????????????????????????????? 
???????????????????????????????? 

???????????????????????????????? 

Value is T 

??????x?x??????????x????????????  

??????x?x??????????x???????????? 

??????x?x??????????x???????????? 
??????x?x??????????x???????????? 

Value is    (Nonzero) 

For Bundle-2, some bits are represented ―x‖ because the input difference of inverse 

S-Box contains at least one ―1‖ bit. It is obvious that the output difference of inverse 

S-Box will contain at least one ―1‖ bit. It means one of the ―x‖ values must be ―1‖ 

for each column that includes ―x.‖ 

If                      , at least one of     is 1. 

As mentioned in Section 2.4.4, in the D-Box layer, three of four bundles are XORed 

with each other to construct the other bundle. To construct Bundle-3; Bundle-0, 

Bundle-1 and Bundle-2 are XORed with each other. It is known that 2
nd

, 10
th

, 21
st
, 

22
nd

, 23
rd

 columns of Bundle-0 and Bundle-1 pairs are exactly the same. When 

Bundle-0 and Bundle-1 are XORed with each other, 2
nd

, 10
th

, 21
st
, 22

nd
, 23

rd
 

columns will be zero. Therefore, the difference of Bundle-3 will come from Bundle-

2 on these columns after the inverse D-Box layer. As can be seen in Table 4.21, 23
rd

, 

22
nd

, 10
th

 columns of Bundle-2 contain at least one ―1‖ bit. It means the difference of 
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Bundle-3, which is    ‖ cannot be zero after the inverse D-Box layer with probability 

one. 

By this point, firstly, the 5-Step truncated differential that starts from Step-2 was 

explained and then the output difference of Super S-Box of Step-4, which is 
          was obtained with probability one. Then, one step and an inverse D-Box 

operation in the backward direction were added to the bottom of this differential and 

the output difference of inverse D-Box of Step-4, which is             was obtained 

with probability one. The idea is to find a nonzero difference value of Bundle-3, 

which is represented as    ‖ so that output difference of Super S-Box and output 

difference of inverse D-Box cannot match in the middle of Step-4. As it is explained 

in detail, in the Step-4, the difference of Bundle-3, which is    ‖ cannot be zero if the 

output difference of Step-5 is           . It can be said that the output difference of 

Step-5, which is            cannot come from the input difference of Step-0 which 

is           if the output difference of Step-2 Super S-Box operation is (        . 

Thus, 6-Step impossible differential distinguisher is obtained.  

                                                

To sum up, we have defined the output difference of Step-5 as          . Since the 

difference value of     and     can be any value and 128-bit of     is fixed, there are 

2
256 

possible output differences that can be generated. Therefore, this impossible 

differential holds with the probability        for a random permutation. Due to the 

birthday paradox, the impossible differential distinguisher needs      different pairs 

to distinguish Shadow-512 from a random permutation. According to (Derbez et al., 

2020), the probability of their 6-Step truncated differential distinguisher is         . 

Compared to their result, our distinguisher works with probability one. Although our 

distinguisher has a better probability, a distinguishing attack on a random 

permutation would require around 2
128

 pairs due to the filtering conditions on the 

input pairs.          
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4.4.  7- Step Impossible Differential Distinguisher of Shadow-512 

 

Figure 4.3: 7-Step Impossible Differential Distinguisher of Shadow-512 
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Normally, Shadow-512 is designed as a 6-Step permutation. However, it can be 

thought of as a 7-step design as if it is a round-extended version. In this section, 7-

step impossible differential distinguisher will be explained. The 7-step impossible 

differential distinguisher is found by adding two more steps in the forward direction 

on the top of 5-Step truncated differential that was explained in Section 3.2. The 5-

step truncated differential starts from Step-4 and consists of two steps in the forward 

direction and two steps in the backward direction. After that, another two steps are 

added to the top of the 5-Step truncated differential and it starts from Step-0. If the 

difference value at the end of Step-1 and the difference value at the beginning of 

Step-2 do not match, the 7-Step impossible differential distinguisher will be 

obtained. The 7-Step impossible differential distinguisher is shown in Fig. 4.3. 

Let    denote the Super S-Box operation and   denotes the bundle index.  

                                                  

Impossible: The difference of Step-2 which is           does not match the difference of Step-1 
           in the middle. 

i. Choose a random pair such that      
     and (          

     in Step-4.     must be 

zero on 0th, 1st, 2nd, 3rd columns of a bundle. 

ii. Choose a random state      
     . 

iii. Compute      
      and         

        for      . Set the states  at Step-

4 such that 

                   
                                   

iv. Iterate Step-5 and Step-6 on    and   
  to obtain           in Step-6. 

v. The difference of Step-6            cannot come from the input difference (         
in Step-0 if the difference of Step-3 is (        . 

 

According to Algorithm-5, in the beginning, 5-Step truncated differential starts from 

Step-4 with the difference value         ). The pairs of Bundle-0, Bundle-1 and 

Bundle-2 are in a 3-Identical state. The 3-Identical state cannot be preserved after the 

first round constant addition since round constant is added to different columns of 

different bundles. However, after one step, three identical differences can be 

obtained by choosing the right difference value of   . As mentioned in Section 3.2, to 

obtain       transition after the Super S-Box, the difference   must be set to zero 

for columns that round constant is added. In other words, the difference value of 0
th
, 

1
st
,2

nd
,3

rd
 columns of a bundle must be set to zero for  . Therefore after the Super S-

Box, the difference will become           and three identical differences are 

obtained. After D-Box, the difference will become           since three of four 

bundles are XORed with each other in the D-Box layer. The difference           
will become           after Super S-Box of Step-5 because zero input difference 

leads to zero output difference in the Super S-Box layer. In the D-Box layer of Step-

5, the difference           will become           since     difference of Bundle-3 

is distributed to other bundles. In the Super S-Box layer of Step-6, input differences 
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of Bundle-0, Bundle-1 and Bundle-2, which are     will lead to different values for 

different bundles. Although Bundle-0, Bundle-1 and Bundle-2 have the same 

difference value before the Super S-Box layer, their pairs are not the same. The same 

input differences can lead to different output differences in the Super S-Box layer. 

Therefore the difference           will become           with probability one 

after the Super S-Box layer of Step-6. The difference values of the first three bundles 

can be any value, but the difference of Bundle-3 is certainly zero. Now, we are going 

back to Step-4, where iteration starts. Two steps of the inverse operation are applied 

to         ) the difference in Step-4. After the inverse D-Box layer of Step-3, the 

difference will become          . In inverse Super S-Box of Step-3, the difference 

          will become           and the difference           will become 

           after inverse D-Box layer. Although the differences of Bundle-0, Bundle-

1 and Bundle-2 are the same, their pairs may not be identical. Since the same input 

difference can lead to different output difference in the inverse Super S-Box layer, 

the difference           will become           after inverse Super S-Box of Step-

2. The difference value of Bundle-0, Bundle-1 and Bundle-2 can be any value, but 

the difference of Bundle-3 is definitely zero after two steps in the backward direction 

if the input difference is         ) in Step-4. 

As mentioned above, the difference value at the beginning of Step-2 is          and 

it is proven that the difference value of Bundle-3 is zero. The idea is adding two 

more steps to the top of the difference value           in Step-2. After two steps that 

are added to the top, if it is proven that the difference value of Bundle-3 of Step-1 

cannot be zero, it cannot match the difference value at the beginning of Step-2. Thus, 

7-step impossible differential distinguisher will be obtained.  

To find impossible differential distinguisher, the difference value           is given 

to bundles in Step-0. The pairs are built in the same way as in Step-4 but now zero 

difference is given to Bundle-0 instead of Bundle-3. It means Bundle-1, Bundle-2 

and Bundle-3 should be in the 3-Identical state. The 3-Identical state cannot be 

preserved after the round constant addition part in the Super S-Box layer. However, 

if the output difference of Super S-Box, which is      is set to zero on the columns 

that round constants are added, the      level transition is valid for Bundle-1, 

Bundle-2 and Bundle-3. Thus the round constant addition that depends on bundle 

index cannot affect the output differences of Super S-Box. The input difference 
          will become           after Super S-Box of Step-0. After that, the input 

difference value of the D-Box           will become           since three of four 

bundles are XORed with each other to construct the other bundle. In Step-1, the input 

difference           will become           after Super S-Box. Bundle-0 difference 

   will distribute to the other three bundles and the difference value will become 

           in the D-Box layer of Step-1. It is certain that the difference value of 

Bundle-3     is nonzero.  

Therefore, the nonzero difference of Bundle-3, which is      cannot match the zero 

difference of Bundle-3 at the beginning of Step-2. It can be said that the output 

difference of Step-6           cannot come from the input difference of Step-0 
          with probability one after 7-Step iteration if the difference of Step-4 

is          . 
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Since the idea is to make the output difference value of Bundle-3 nonzero after Step-

1, there are three input difference structures that can be given to the bundles at the 

beginning of Step-0. In Table 4.22, all possible input difference structures that lead 

to nonzero Bundle-3 difference after Step-1 are shown.  

Table 4.22: The possible input difference structures of 7-Step impossible differential 

distinguisher 

INITIALIZATION                               

STEP-0                               

STEP-1                               

7-Step impossible differential characteristics: 

                                                or 

                                                 or 

                                                

In Step-0, we use two 3-Identical input messages                  and    
              such that                   . The probability of constructing 

   is       because 256 bits are fixed. The probability of constructing    is       
      because the Bundle-3 of    should be the same as the Bundle-3 of   . 

Therefore, we can say that the output difference           of Step-6 cannot come 

from the input difference           of Step-0 with probability       for a random 

permutation. Due to the birthday paradox, one needs at least      different input 

pairs to observe            output difference at the end of Step-6. 

On the other hand, we can also build this 7-Step impossible differential by not using 

the 3-Identical property. We need to obtain           difference right after the 

Super S-Box of Step-0. If we start from the D-Box operation of Step-0 with the input 

difference          , we can say that the output difference value of Step-6 

          cannot come from the input difference of Step-0 which is          . 

This 7-Step impossible differential distinguisher holds with the probability   
        for a random permutation since the 128 bits of input differences are fixed. 

Therefore the data complexity of the 7-Step impossible differential distinguisher is 

     pairs because of the birthday paradox. 

To sum up, if Shadow-512 permutation were designed as 7-Step, there exists an 

impossible differential that distinguishes 7-Step Shadow-512 from random 

permutation. According to (Derbez et al., 2020), the probability of their 6-Step 

truncated differential distinguisher is          . Compared to their result, our 

distinguisher works with probability one. Although our distinguisher has a better 

probability, a distinguishing attack on a random permutation would require around 

2
192

 pairs.   
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4.5. 8-Step Improbable Differential Distinguisher of Shadow-512 

 

Figure 4.4: 8-Step Improbable Differential Distinguisher of Shadow-512 
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In Section 4.3, two different 6-Step impossible differential distinguishers of Shadow-

512 were explained. As mentioned in Section 2.3, Shadow-512 was designed as 6-

Step; however, it is possible to find a distinguisher that covers more than six steps. In 

Section 4.4, we have introduced a 7-Step impossible differential as if Shadow-512 

has been designed as seven steps. Similarly, it can be considered that Shadow-512 

consists of eight steps. In this section, 8-Step improbable differential distinguisher 

will be explained. The 8-Step improbable differential has two parts. Firstly, three 

steps that start from Step-5 will be described. Then, five steps that start from Step-0 

will be explained. The improbable differential distinguisher will be obtained between 

Step-4 and Step-5. 

Let    denote the Super SBOX operation and   denotes the bundle index.  

                                                 

Improbable: The difference of Step-5            cannot come from the input difference (         
in Step-0 with the probability 1-      if the difference of Step-5 is (        . 

i. In Step-5, choose a pair such that      
     and            

                 .   

must be zero on the 0th, 1st, 2nd, 3rd columns of a bundle.  

ii. Choose a random state      
     . 

iii. Compute      
      and         

        for      . Set the states at Step-5 

such that 

                   
                                   

iv. Iterate Step-6 and Step-7 to obtain            output difference. 

v. If the input difference is (          in Step-0, the output difference can be            
in Step-7 with the very low probability      .  

 

According to Algorithm-6, the improbable differential starts from the D-Box 

operation of Step-5 with the difference value          . The difference     must be 

set to zero on the 0
th
,1

th
,2

nd
,3

rd
 columns that round constant is added. To obtain 3-

Identical State at the input of Super S-Box of Step-5,     must be set to zero on these 

bits after the Super S-Box operation. In the D-Box layer of Step-5, three of four 

bundles are XORed with each other and the difference value will become          . 
In Step-6,           input difference will become           after Super S-Box layer. 

The difference      will be distributed to other bundles in the D-Box layer of Step-6. 

Step-7 starts with the difference value           and           the difference will 

become           after Super S-Box of Step-7 with probability one. 

The second part starts from Step-0 with the difference value          . Bundle-0, 

Bundle-1 and Bundle-2 pairs must be 3-Identical. The 3-Identical state cannot be 

preserved after the first round constant addition part. Therefore, to obtain three 

identical output differences of Super S-Box, the output difference of Super S-Box, 

which is     must be set to zero on columns that round constants are added. The 
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detailed explanation about building pairs that gives     transition was explained 

in Section 3.2. Thus, the input difference of Step-0, which is            will 

become           after the Super S-Box of Step-0. After the D-Box of Step-0, since 

the differences of Bundle-0, Bundle-1 and Bundle-2 are the same, their differences 

cancel out each other and the output difference of the D-Box will become          . 
In Step-1, the difference           will become           after the Super S-Box layer 

and the difference           will become           after the D-Box because the 

difference of Bundle-3, which is     will be distributed to other bundles. After the 

Super S-Box of Step-2, the difference           will become          . It means the 

differences of Bundle-0, Bundle-1 and Bundle-2 can be any value. Since round 

constant is added to different columns for different bundles, the output difference of 

S-Box can be different for the same input. In other words, although the round 

constant addition part does not affect the difference value, it affects the values of 

input pairs. Therefore, even if output differences of Bundle-0, Bundle-1 and Bundle-

2 are the same after the RC part, their input pairs are different from each other. After 

all, the second S-Box layer that is done right after the round constant addition part 

may give different output differences for the same input differences according to 

DDT. Up to now, it is guaranteed that if the input difference is           in the 

beginning of Step-0, the output difference of the Super S-Box of Step-2 will be 
          with probability     .   

In the D-Box layer of Step-2, Bundle-0, Bundle-1 and Bundle-2 are XORed with 

each other to construct the difference of Bundle-3. As explained above, the 

difference values of Bundle-0, Bundle-1 and Bundle-2 are    ,      and     , 

respectively. Since the exact values of    ,     and     are not known, they might be 

anything except for zero. Therefore, if they are XORed with each other in the D-Box, 

the result can be zero with the probability   .  

After the D-Box layer of Step-2: 

  
                     

  
                    

  
                      

  
                                           

Since 128 bits are fixed to zero at the difference of Bundle-3, the probability of 

having zero difference of Bundle-3 is      .           . 

At the beginning of Step-3, the differences are           . It is obvious that zero 

input difference leads to zero output difference after the Super S-Box of Step-3 for 

Bundle-3. The purpose is to obtain the same output differences for Bundle-0, 

Bundle-1 and Bundle-2. 
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After the Super S-Box layer of Step-3: 

  
     

         
          

     

  
     

         
          

     

  
     

        
          

     

  
     

         
          

     

The probability of having identical differences of Bundle-0, Bundle-1 and Bundle-2 

is       because the difference of Bundle-3 will be definitely zero and there are      

different     values of whole      structures.          . 

After the D-Box of Step-3, the difference           will become           since 

three of four bundles will be XORed with each other. In Step-4, after the Super S-

Box layer, the difference will become         ) with probability one.      .  

After the D-Box Layer of Step-4 

After the D-Box layer of Step-4, the difference            will be 

definitely         ). Although the differences of Bundle-0, Bundle-1 and Bundle-2 

are the same value, their input pairs may be different from each other. The idea is 

obtaining 3-Identical State at the beginning of Step-5. In other words, pairs of 

Bundle-0, Bundle-1 and Bundle-2 should be the same. The probability of having a 3-

Identical state is 2
-256

 because 128 bits are fixed for a bundle and the same value will 

be given to the other two bundles.          

After the Super S-Box Layer of Step-5 

At the beginning of Step-5, Bundle-0, Bundle-1 and Bundle-2 pairs are the same and 

their differences are         ). It is known that the only difference between the 

Super S-Boxes is round constant operation. To obtain     transition for each 

Bundle-0, Bundle-1 and Bundle-2 differences,   should be zero on columns that 

round constant is added. The other columns will definitely be the same for the first 

three bundles after the Super S-Box operation. The probability of having zero 

difference on 0
th
,1

th
,2

nd
,3

rd
 columns of     is         since 16 bits are fixed to 

zero.  Thus, it would be said that the difference     is equal to     after the Super S-

Box of Step-5 with probability                           . Therefore, the 

probability of not having the output difference           after Super S-Box of Step-

5 is          if the input difference is             It is obvious that the 

differences          ) and           miss in the middle of Step-5 with the 

probability        . 

                                                                 

The probability    shows that it is not impossible, but it is improbable. The 

probability of not having           the difference after five and a half steps is 
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almost one. Therefore it can be said that the output difference of Step-7 which is 

          cannot come from the input difference of Step-0 which is          with 

the probability            . 

                                                     

In Step-0, we use two 3-Identical input messages                  and    
              such that                   . The probability of constructing 

   is       because 256 bits are fixed. The probability of constructing    is       
      because the Bundle-3 of    should be the same as the Bundle-3 of   . 

Therefore, we can say that the output difference           of Step-7 can come 

from the input difference           with the probability          for a random 

permutation. Due to the birthday paradox, one needs at least      different input 

pairs to observe            output difference at the end of Step-7.  

On the other hand, we can also build this 8-Step improbable differential distinguisher 

by starting after the Super S-Box layer of Step-0 with the difference          . 

Now, we do not use the 3-Identical property and Bundle-0, Bundle-1 and Bundle-2 

may be different from each other at the beginning of Step-0. However, their 

differences should be the same right after the Super S-Box of Step-0. Therefore, we 

can still say that the output difference of Step-7 which is           cannot come 

from the input difference of Step-0 which is            with the probability     
        .  

                                                     

The probability of observing           input difference at Step-0 is           for 

a random permutation because 128 bits are fixed at the input. Due to the birthday 

paradox, one needs at least      different input pairs to observe            output 

difference at the end of Step-7. 

In a nutshell, It can be seen that the probability of improbable differential 

distinguisher is less than the probability of random permutation in both scenarios.  

As mentioned in Section 1.6, since       , this improbable differential 

distinguisher is valid for 8-Step Shadow-512. Our 8-Step improbable differential 

distinguisher is the longest differential distinguisher of Shadow-512 that has been 

found yet. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

Differential cryptanalysis is one of the most common methods that help an attacker 

exploit the differential relations between inputs and outputs of an algorithm for a 

specific round. It investigates the output differences when specific input differences 

are given to inputs. An output of a cryptographic algorithm should seem random. 

However, it is possible to distinguish the algorithm’s output from a random 

permutation by using differential cryptanalysis techniques.  

 

In this thesis, we have worked on the Spook algorithm, which is one of the round 2 

candidates of the NIST’s lightweight cryptography competition. Spook algorithm 

uses Shadow-512 as an internal permutation. Since NIST encouraged the public 

evaluation of candidate algorithms, we have tried finding differential distinguishers 

of Shadow-512 that help us distinguish Shadow-512 from a random permutation. 

The authors of Spook recommended using Shadow-512 as 6-Step. They also stated 

that it could be used as 4-Step. For this purpose, we have worked on the concept of 

impossible and improbable differential cryptanalysis. We have investigated 

the undisturbed bits of Shadow’s S-Box to find longer impossible differentials. In 

(Derbez et al., 2020), they have already found a 5-Step truncated differential 

distinguisher of Shadow-512 with probability one. We have tried finding impossible 

differential distinguishers of Shadow-512 that cover more steps than their 

differentials. In a nutshell, we have found two different 6-Step impossible differential 

distinguishers that cover full Shadow permutation by using their 5-Step truncated 

differential. In addition, in (Derbez et al., 2020), they found 7-Step truncated 

differential distinguisher with probability 2
-16.245

 as if Shadow-512 has a 7-Step. 

From this point of view, we have tried finding longer differentials of Shadow-512. 

We have found 7-Step impossible differential distinguisher with probability one. 

Besides, we have found an 8-Step improbable differential distinguisher of Shadow-

512 with probability 2
-656

. We have found the longest differential distinguisher of 

Shadow-512.  
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Table 5.1: Summary of truncated, impossible, and improbable differential 

distinguishers on Shadow-512 

Steps Method Probability 

for Shadow-

512 

permutation 

Probability for 

random 

permutation 

Section 

5 Truncated Diff. 1 2
-128

 (Derbez et al., 

2020) 

6 Truncated Diff. 2
-16.245

 2
-128

 (Derbez et al., 

2020) 

6 Impossible Diff. 0 2
-128

 4.3.1 

6 Impossible Diff. 0 2
-256

 4.3.2 

7 Truncated Diff. 2
-16.245

 2
-128

 (Derbez et al., 

2020) 

7 Impossible Diff. 0 2
-640

 or 2
-384

 4.4 

8 Improbable Diff. 2
-656 

2
-640

 or 2
-384

 4.5 

 

 

To sum up, it would have been expected that the output of the Shadow-512 should 

seem random for its security. However, we have proven that the Shadow-512 has 

non-random behavior even if it is extended to eight steps. We are able to distinguish 

6-,7-,8-Step Shadow-512 from a random permutation. We cannot perform a forgery 

attack on Spook by using our distinguishers. To perform a forgery attack on Spook, 

we need to find a collision at the output to produce the same tag. Since we found the 

impossible and improbable distinguishers, we cannot specify the exact output 

differences that should be obtained at the output. We can only specify which input 

differences do not lead to which output differences.  
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